## Appendix A: Public Engagement Plan

# METROCOG <br> FARGO-MOCRHEAD METROPOUITAN COUNCIL OF GCVERNMENTS 

# 17th Street N Corridor Study 

## Public Engagement Plan

April 7, 2020

Real People. Real Solutions.
BMI No. T49.120979

## A. Purpose and Background

This Public Engagement Plan will guide outreach efforts by identifying specific stakeholder groups to engage, strategies to employ, tools to utilize, and ongoing communication forums. These efforts will focus on leading the community through a transparent study process concluding in a publicly supported recommendation.

Public engagement will be a key component in the successful completion of the $17^{\text {th }} \mathrm{St} \mathrm{N}$ Corridor Study. Engagement opportunities provide a platform for the public and local agencies to lend their voice and input to the study development and alternative evaluation. Providing productive comment forums allows the project team and public to work together to develop a solution that has broad community support, lending credibility to key decisions made during the project. Making timely, accurate, and useful information available to both key decision-makers and the general public will assist in gaining necessary public and agency support to ultimately approve and implement the study recommendations.

This Public Engagement Plan is a fluid document and may be updated throughout the course of the study.

## B. Goals, Objectives and Expected Outcomes

The overall goals and objectives of the public involvement process are to:

- Properly identify and engage stakeholders and vested individuals and groups
- Outline opportunities for public outreach
- Describe how and when public engagement opportunities will occur
- Integrate public involvement tasks with the project design team process

The intended outcome of the engagement efforts outlined in this plan is that the public has actively participated in the study process and to ultimately gain public and stakeholder support for the recommended solutions.

## C. Study Review Committee (SRC)

| Metro COG | NDDOT |
| :---: | :---: |
| Dan Farnsworth | Wayne Zacher |
| Transportation Planner farnsworth@fmmetrocog.org | Local Government Division wzacher@nd.gov |
| 701-532-5106 | 701-328-2118 |
| Luke Champa | FHWA - ND |
| Assistant Planner <br> champa@fmmetrocog.org 701-532-5107 | Kristen Sperry <br> Planning and Environmental Program <br> Manager |
| City of Moorhead | 701-221-9464 |
| Jonathan Atkins |  |
| Traffic Engineer <br> Jonathan.atkins@cityofmoorhead.com | BOLTON \& MENK, INC. (BMI) |
| 218-299-5388 | Cody Christianson <br> Project Manager <br> cody.christianson@bolton-menk.com |
| Robin Huston <br> Community Development Director <br> robin.huston@cityofmoorhead.com | 952-890-0509x3496 |
| 218-299-5332 | GIS Specialist/Public Engagement james.mertz@bolton-menk.com |
| Steve Moore <br> Public Works Director <br> steve.moore@cityofmoorhead.com | 701-739-8095 |
| 218-299-5422 | Andy Krog <br> Project Engineer <br> andrew.krog@bolton-menk.com |
| Lori Van Beek <br> Transit Manager | 701-566-5339x3300 |
| Ivanbeek@matbus.com | Toole Design |
| 701-476-6686 |  |
| Park Christian School | Project Planner ccox@tooledesign.com |
| Michael Levang <br> Junior/Senior High Principal mlevang@parkchristianschool.org | 612-584-4094x505 |
| 218-236-0500 |  |

## D. Develop List of Stakeholders

One of the ongoing tasks during the study phase of the project will be to identify and engage with stakeholders. The consulting team will work with Metro COG and city staff to identify stakeholders which shall include, but are not limited to:

|  | Study Review Committee (SRC) | Public |  |
| :---: | :---: | :---: | :---: |
| 17th St N <br> Corridor <br> Study | FM Metro COG <br> City of Moorhead - Engineering <br> City of Moorhead - Planning <br> City of Moorhead - Public Works <br> City of Moorhead - Transit <br> Park Christian School <br> NDDOT <br> FHWA - ND <br> Bolton \& Menk, Inc. <br> Toole Design | Adjacent Residents <br> Burger Time <br> Bridgepointe Community Church of the Nazarene <br> Stenerson Bros Lumber <br> Lloyd's Auto Body <br> D-S Beverages <br> Park Christian School <br> All Star Bowl <br> Northside Truck Repair <br> Moorhead Manor | Area commuters and nearby off-corridor property owners <br> General Public <br> Applicable Jurisdictions and Elected Officials <br> Applicable Organizations and Groups (such as bike/ pedestrian advocacy groups, neighborhood associations) <br> Transit Users <br> Moorhead Arts \& Culture Commission <br> Historical \& Cultural Society of Clay County |

## E. Study Review Committee (SRC)

SRC Meetings (qty. 3) with Agency and Consultant staff will be held throughout the project. These meetings provide opportunity for ongoing study coordination and direction at critical decisionmaking steps or major milestones. Study status and deliverables will be discussed as well as any issues or solutions as they arise. These meetings will be integral to managing schedule and budget.

## F. Public Engagement

At the time of creation of this Public Engagement Plan the United States and local governments in the Fargo-Moorhead Metropolitan area are practicing cautionary social distancing measures to combat the spread of the novel coronavirus, COVID-19. For this reason, the Public Engagement Plan will utilize a variety of in-person and virtual engagement activities with the ability to be flexible and adapt these practices in timing and format as the public health situation evolves.

Project communications and engagement activities with the general public will take multiple forms to better reach a wider audience. The communication outlets found below will inform the public about the study's progress, share plans, graphics, and schedules, and identify opportunities to get involved.

## 1. Face-to-Face Communications

a) A Focus Group Workshop will be organized to inform area non-profits and business owners about study details and to receive feedback on the issues and opportunities along the corridor.

## b) Open House Meetings

BMI will host two open houses to engage residents, students, property/business owners, and organizations along the corridor. The first will provide an opportunity to share the project purpose and need and gather input on goals, issues, needs, and opportunities. The second will gather input on proposed solutions.

Bolton \& Menk will coordinate with the SRC to determine the specific timing and content of each meeting, with the goal of engaging key residents and stakeholders to achieve informed consent for the project. Topics will focus on multimodal improvements/bicycle facilities, traffic calming, safety improvements, access management, potential impacts to adjacent properties and residents, and project schedule. Attendees will have an opportunity to provide feedback on alternatives and will have a greater understanding of the issues and recommended solutions that will be moved forward into final design.

## 2. Communication Toolbox

## a) Webpage Content

The project webpage will be hosted by Metro COG. Bolton \& Menk will provide project information including notifications, project updates, public meeting summaries, and links to the digital campaign tools for inclusion on the project webpage. All communication will refer the audience to check the webpage for up-to-date information. Update notifications and meeting information will be sent to subscribers.

## b) Digital Communications Platform

A digital communication platform will be maintained by Bolton \& Menk throughout the entirety of this study. This platform will allow for stakeholders to sign up for email or text updates. The project team will be able to use this platform to distribute project information and upcoming meeting details as well as to track user engagement.
c) INPUTiD $^{\mathrm{TM}}$

Bolton \& Menk's INPUTiD ${ }^{\text {TM }}$, a custom web-based application that allows the public to provide comments specific to a location, will be created for this study. Users can react and respond to previous comments enabling the project team to track trends and gauge the level of support within the community. Our communications lead will regularly monitor input and provide timely responses. This will be a valuable tool to maintain communication with the public and stakeholders.

Initially, this application will be made available to gather concerns about existing conditions and needs to be considered in development of alternatives. Once developed, design alternatives will be uploaded to the application to collect input specific to proposed elements to gather feedback on impacts.

## d) Project Mailings

Up to three mailings will be prepared and sent by Bolton \& Menk. The first will be a study announcement that informs local stakeholders about the project and directs individuals to the study website and text-to-subscribe features. The latter mailings will be created and distributed in coordination with the Open House meetings and will include project updates, opportunities for input, and details for upcoming meetings. Metro COG will be responsible for reviewing content prior to distribution.
e) Social Media Content

Bolton \& Menk will assist Metro COG in producing graphics, images and related content for posting study updates on Metro COG and City of Moorhead social media accounts.

## f) Online Surveys

Bolton \& Menk will create two online surveys that will coordinate in timing with the Open House meetings. They will be structured in a manner that closely relates to the questions asked at the Open House to replicate the Open House experience.

## g) Newspaper/Press Release

Bolton \& Menk will work with Metro COG to create text for inclusion in press releases or newspaper box advertisements prior to Open House meetings.


## Appendix B: Existing Conditions

##  <br> 17H STREE

# 17 $^{\text {th }}$ Street $\mathbf{N}$ Corridor 

 StudyFINAL Existing + No-Build Conditions Memorandum

| Date: | November 9, 2020 |
| :--- | :--- |
| To: | Luke Champa, Assistant Planner, FM Metro COG |
|  | Dan Farnsworth, Transportation Planner, FM Metro COG |
| From: | Cody Christianson, PE, Project Manager, Bolton \& Menk, Inc. |
|  | Jim Mertz, GISP, Project Planner, Bolton \& Menk, Inc. |

Subject: Existing and No-Build Conditions
$17^{\text {th }}$ Street N Corridor Study
Fargo-Moorhead Metropolitan Council of Governments (Metro COG)

## Table of Contents

I. Introduction ................................................................................................................... 3

Previous Studies Overview ............................................................................................. 4
Previous and Planned Projects ..................................................................................... 11
Demographics and Trends ............................................................................................ 12
II. Transportation System Characteristics .......................................................................... 14

Functional Classification ............................................................................................... 14
Study Area Overview ................................................................................................... 15
Land Use and Major Traffic Generators......................................................................... 17
Existing Traffic Operations........................................................................................... 18
Future No-Build Traffic Conditions ................................................................................ 19
Crash History............................................................................................................... 20
Corridor Access ............................................................................................................ 21
Pedestrian and Bicycle Connections .............................................................................. 24
Transit Service.............................................................................................................. 25
III. Social, Economic, and Environmental (SEE) Considerations........................................... 26
IV. Summary of Issues ....................................................................................................... 29

## Appendices

Appendix A - Figures
Appendix B - Environmental Screening

November 9, 2020

## I. Introduction

The Fargo-Moorhead Metropolitan Council of Governments (Metro COG), in collaboration with the City of Moorhead, is working to identify transportation improvements on $17^{\text {th }}$ Street N , as shown on Figure 1 (Appendix A). The study will:

- Define issues and potential opportunities both today and into the future
- Develop and evaluate potential infrastructure improvement alternatives to address existing and projected issues and to guide future growth and development
- Establish improvement recommendations
- Develop an implementation plan that can be phased in over time

The purpose of this memorandum is to document existing and no-build conditions and to identify and confirm issues along and near $17^{\text {th }}$ Street N . This memo is organized by the following sections:

- Corridor History
- Previous studies overview
- Demographics and trends
- Transportation system characteristics
- Study area characteristics
- Land use and major traffic generators
- Existing and no-build traffic conditions
- Crash history
- Access
- Pedestrian and bicycle
- Transit
- Social, environmental, and economic (SEE) resources
- Summary of issues

This information will guide the development of plan goals and objectives and ultimately the identification of improvement alternatives for $17^{\text {th }}$ Street N .

November 9, 2020
Appendix A of this memo contains figures of each of the study area characteristics listed above and SEE resources, including:

- Figure 1 - Study Area
- Figure $\mathbf{2}$ - Future Projects
- Figure 3 - Access Inventory and Functional Class
- Figure 4 - Existing Land Use
- Figure 5 - Future Land Use
- Figure 6-Traffic Volumes and Crash History
- Figure 7 - Pedestrian and Bicycle Connections
- Figure 8 - Current AM Peak Hour Operations
- Figure 9 - Current PM Peak Hour Operations
- Figure 10 - Transit
- Figure 11 - Natural Features
- Figure 12 - Social and Cultural Features


## Corridor History

A unique characteristic of the $17^{\text {th }}$ Street $N$ corridor is its 140 feet of platted right-of-way and approximately 60 feet of curb-to-curb pavement. The first known plat for this corridor, Elder's First Addition, was recorded in December 1881 by Moorhead Attorney Ferdinand Elder. The plat named the street Park Avenue and depicts 140 feet of right-of-way compared to the standard 80 feet at the time. The name Park Avenue continued in 1882 for the next plat north, Hole's Second Addition. Park Avenue was likely the official street name until July 1902 when Moorhead's current addressing system was implemented. By 1936, Auditor's out lots completed the 140-foot right-of-way platting along the existing corridor, and these are the first documents recorded with the modern name of 17th Street N .

## Previous Studies Overview

Several studies have been completed which provide direction for future transportation needs within and around the $17^{\text {th }}$ Street N corridor. The key points in each study relevant to the corridor area are summarized below by plan title.

November 9, 2020

## City of Moorhead Comprehensive Plan Addendum (November 2009)

The Moorhead Comprehensive Plan was developed by the City Council, the Planning Commission, the Comprehensive Plan Steering Committee, the Active in Moorhead Partnership, and the North Dakota State Data Center in November 2009 as a guiding document for planning over the next 25 years. The City's Comprehensive Plan provides the legal framework for planning and zoning in Moorhead. The plan includes background and community context, a vision for the community, the land use plan, detailed description of activity centers, and strategic initiatives/implementation methods for the future.

The land use plan recommends an update in the land use designation along $17^{\text {th }}$ Street N from $1^{\text {st }}$ Ave N to $15^{\text {th }}$ Ave N from mostly low-density residential to a mix of medium density mixed residential, medium density residential, public/institutional, and community commercial. It is recommended that the majority of the corridor, from $4^{\text {th }}$ Ave N to $13^{\text {th }}$ Ave N be designated at medium density mixed residential.

Other recommendations presented in the document include reinvestment throughout the city in the form of maintenance, new community gathering spaces, and increased retail and recreational opportunities. A pedestrian crossing is recommended on the east side of the intersection of $1^{\text {st }}$ Ave N and $17^{\text {th }}$ Street N .

The plan also presents various strategic initiatives to assist with achieving community goals. The strategic initiatives presented are:

1) Use the growth area plan to guide development decisions
2) Implementation of downtown/infill redevelopment area framework plans
3) Flood risk reduction
4) Support the Active in Moorhead partnership
5) Adopt a "Complete Streets" design philosophy
6) Planning in a time of economic distress
7) Growth management

## Fargo-Moorhead Metropolitan Bicycle and Pedestrian Plan (February 2017)

The Fargo-Moorhead Metropolitan Council of Governments (Metro COG) released the FargoMoorhead Metropolitan Bicycle and Pedestrian Plan in February 2017 as a sub-element of Metro COG's Long Range Transportation Plan. The plan, updated every 5 years, identifies current issues and needs as they relate to bicycling and pedestrian movements in the area and
develops recommendations to enhance bicycle and pedestrian accommodations and safety of all users. Recommendations presented in this plan include:

1) Bicycle and Motorist Education: bicycle safety education, distribution of bikeway maps, update of Bikefm.org website, and NDDOT coordination
2) Safety: intersection safety improvements, law enforcement of school zone speed limits and crosswalk compliance, and state DOT coordination
3) Bicycle and Pedestrian Network Improvements: construction of protected bike lanes, bike lanes, sharrows, or signed roadway along $17^{\text {th }}$ Street N from $2^{\text {nd }}$ Ave N to $15^{\text {th }}$ Ave N
4) Bicycle and Pedestrian Network Improvements: addition of bike lanes, sharrows or signed roadway on $7^{\text {th }}$ Ave $N$ from $11^{\text {th }}$ St to US 75 intersecting $17^{\text {th }}$ Street $N$
5) Improved Maintenance: maintenance of path surface conditions, increased street sweeping, and continued snow removal
6) Encouragement: urban design/planning that encourages density and more bicycle and pedestrian use, apply as a Bicycle Friendly Community, provide public with FM bikeway maps, and provide public notifications through online and print media

## Moorhead Downtown Master Plan (not yet published)

In July 2019, the City of Moorhead together with Downtown Moorhead, Inc. began a comprehensive examination of Moorhead's downtown area. Recommendations aim to improve transportation, encourage vibrancy, and stimulate development. The plan is expected to be released in July 2020.

The project area includes the southern portions of the $17^{\text {th }}$ Street N corridor. This southern block is part of a sub-area defined as the Creative Pioneer District to reflect goals of creative industry development. As recommendations are made available, they will be included here.

## $1^{\text {st }}$ Avenue North: A Review of the Corridor from the Red River to $21^{\text {st }}$ Street (November 2008)

In November 2008, the Moorhead Engineering and Community Service Departments released a review of $1^{\text {st }}$ Avenue North from the Red River to $21^{\text {st }}$ Street. This study includes a preliminary design plan for 1st Avenue N roadway reconstruction and rehabilitation, including roadway, traffic control, access management, streetscape improvements, and pedestrian/bicycle facilities. It also includes recommendations for properties adjoining $1^{\text {st }}$ Avenue N and recommendations for corridor improvements including infrastructure and right-of-way. Recommendations relevant to the $17^{\text {th }}$ Street N corridor include:

1) A two-inch mill overlay along $1^{\text {st }}$ Avenue N between $8^{\text {th }}$ Street and $17^{\text {th }}$ Street

November 9, 2020
2) A traffic signal at the intersection of $1^{\text {st }}$ Avenue $N$ and $17^{\text {th }}$ Street $N$ to alleviate significant side street delays
3) A 4.5-ft sidewalk along the north side of $1^{\text {st }}$ Avenue N between $8^{\text {th }}$ Street and $17^{\text {th }}$ Street and an $8-\mathrm{ft}$ wide sidewalk starting at $17^{\text {th }}$ Street N
4) A marked pedestrian crossing and raised median curb along the east leg of the $1^{\text {st }}$ Avenue N and $17^{\text {th }}$ Street N intersection
5) Streetscape improvements along $1^{\text {st }}$ Avenue N including at the $17^{\text {th }}$ Street intersection

## 2045 Fargo-Moorhead Metropolitan Transportation Plan (November 2019)

The 2045 Fargo-Moorhead Metropolitan Transportation Plan, released in November 2019, is a collaborative effort of the Fargo-Moorhead Metropolitan Council of Governments and its member jurisdictions. This plan, also called Metro Grow, establishes a vision for transportation across the Fargo-Moorhead metropolitan area through the year 2045. It identifies an action plan for how the region can address long-term mobility, safety, and access needs through investments in the existing transportation system. The plan is developed to meet community goals, needs, and priorities by taking a multi-modal approach to the transportation system and considering potential future investments in the roadway, transit, bicycle, pedestrian, and freight systems for the region. An update is required every five years.

The plan includes recommendations based on established goals. The goals include

1) Safety system \& security: provide a transportation system that is safer for all users and resilient to incidents,
2) Travel efficiency \& reliability: improve regional mobility,
3) Walking \& biking: increase walking and biking as a mode of transportation,
4) Transit access: support enhanced access to the existing and future MATBUS system,
5) Maintain transportation infrastructure: provide a financial plan that supports maintaining transportation infrastructure in a state of good repair,
6) Environmental sustainability: provide a transportation system that provides access equitability and limits impacts to the natural and built environment,
7) Economic development \& transportation decisions: promote transportation projects that support regional economic goals, support freight movement, and promote projects that can be financially sustained for the long-term, and
8) Emerging transportation trends: incorporate transportation trends and new technologies in regional transportation plans.

November 9, 2020
The plan includes specific strategies to achieve these goals. Strategies relevant to the $17^{\text {th }}$ Street N corridor include:

1) Facilitate local implementation of short-term system management projects and consider additional mid-to longer term solutions to manage congestion on local roadways,
2) Prioritize projects that reduce the number of bicycle and pedestrian crashes and improve safety for all users, and
3) Consider recommendations presented in the Fargo-Moorhead Metropolitan Area 20162020 Transit Development Plan to improve existing transit services.

## Fargo-Moorhead Metropolitan Area 2016-2020 Transit Development Plan (December 2016)

In December 2016, the Fargo-Moorhead Metropolitan Council of Governments published the Fargo-Moorhead Metropolitan Area 2016-2020 Transit Development Plan to complete a rigorous assessment of the current transit system and provide recommendations for future transit development in the Metro Area Transit (MATBUS) service area. MATBUS is a transit agency collectively operated by the Cities of Fargo and Moorhead to provide 15 fixed-routes and demand-response transit service in the Fargo-Moorhead Metropolitan Area - specifically Fargo, West Fargo, Moorhead, and Dilworth.

The plan recommends a two-track strategy to improve the fixed route and paratransit services provided in the metro area. The tracks are:

1) Improve the effectiveness of the system within the current budget of revenue hours of service. The focus of this portion of the recommended plan was to critically assess the strong and weak portions of the current system with the purpose of improving both. This approach will result in not only advances associated with pulling up the poor performing routes/segments (Reworking Route 18 and Route 23), but pushing forward highly productive elements (Route 15), and
2) Identify changes to and/or expansion of the system that require increasing the annual operating funding and additional capital investment and assign the increased dollars to concepts that fills gaps, is supported by residents, and looks to future regional growth.

Specific to fixed bus route 4 , which runs along the majority of the $17^{\text {th }}$ Street $N$ corridor from $4^{\text {th }}$ Ave N to $13^{\text {th }}$ Ave N , the plan recommends:

1) Addressing Route 4 resident complaints by realigning from $20^{\text {th }}$ St $N$ to $17^{\text {th }}$ Street $N$ and from $5^{\text {th }}$ Ave N to $13^{\text {th }}$ Ave N to provide more frequent service,

November 9, 2020
2) Improving Moorhead night route on-time and service by extending routes $1,3,4$, and 5 end times to 11:00 PM and adding a second bus to Route 4 to provide 30 minute service on weekday and Saturday nights, and
3) Addressing requests for Sunday service in Moorhead by operating Sundays from approximately 9:00 AM to 7:00 PM on Routes 1, 2, 3, 4, 5, and paratransit.

## City of Moorhead Arts and Culture Framework Development Plan (February 2019)

The City of Moorhead Arts and Culture Framework Development Plan, or the Creativity \& Culture Roadmap, was developed to help the Moorhead community find common ground in accelerating the role of arts and culture in creating well-being and prosperity for Moorhead. It is a tool inviting multiple approaches for involvement and implementation in the spirit of innovation and creativity that it celebrates. The plan recommends investing in the following areas to accomplish measurable, long-term goals and objectives:

1) Placemaking: create places where people want to gather,
2) Working together: build and support public and private capacity and collaboration to grow the creative sector,
3) Story and identity: brand and market Moorhead's unique artistic, cultural, and creative attributes, and
4) Implementation: coordinate and champion people, processes, and practices to propel this framework forward.

The plan includes specific goals and objectives for each recommended area of investment. Some goals that relate directly to the $17^{\text {th }}$ Street N corridor include:

1) Work with neighborhoods, each with its unique cultural identity gathering locations, to develop a strong sense of neighborhood, ensuring that arts and culture are integrated as a key vehicle for defining neighborhood identity,
2) Enhance Moorhead's visual appeal through streetscapes, murals, greenspace development, and arts and culture to modernize the look, feel, and accessibility of the city, and
3) Encourage collaboration within government planning bodies or elsewhere in the community, ensuring that arts and culture add value and are an integral part of the planning process.

November 9, 2020

## City of Moorhead ADA Transition Plan for Public Right-of-Way (July 2018)

The City of Moorhead Americans with Disabilities Act Transition Plan for Public Right of Way was published in July of 2018 as part of requirements laid out in the Americans with Disabilities Act (ADA). The plan is a summary of their three-phase approach to evaluating accessibility of the community's infrastructure and achieving compliance with the ADA. It includes documentation of the City's accessibility-related policies and procedures, a project field review guide, an inventory of public right-of-way facilities and their condition, a summary of public outreach efforts, and required elements of an ADA Transition Plan.

During the inventory of pedestrian facilities, the City found most public right-of-way facilities to be non-compliant with ADA standards. $82 \%$ of curb ramps, $100 \%$ of sidewalk ramps, $48 \%$ of accessible pedestrian signals, $88 \%$ of on-street transit facilities, $100 \%$ of public parking lots, and $85 \%$ of at-grade pedestrian railroad crossings were found to be non-compliant with ADA standards. This includes many curb ramps and uncontrolled crossing locations along the $17^{\text {th }}$ Street N corridor that are in poor condition or not available.

## Fargo/West Fargo Parking and Access Study (December 2018)

In December 2018, the City of West Fargo, the City of Fargo, and the Fargo-Moorhead Metropolitan Council of Governments published a Parking and Access Study in response to high levels of growth in the area. The purpose of the study was to analyze how parking plays a role in site development, how street networks can be best laid out to create efficiency in the transportation network, and how modifications to both access and parking regulations can achieve the goals of Metro COG, Fargo, and West Fargo. The key goals of this study were to:

1) Develop guidelines that encourage safe traffic flow, as well as a comfortable walking and biking experience
2) Develop access and roadway guidelines that complement land use form, as opposed to just functional classifications
3) Reduce the need to build excess off-street parking
4) Enable sustainable development patterns

The study analyzed the development patterns, roadway functional classifications, the existing zoning code, and parking utilization rates to development a list of issues and opportunities related to parking and access in the metro area.

1) Issue: Many of the streets in Fargo and West Fargo are designed to maximize traffic flow, with several lanes and high speeds. It negatively impacts walkability and creates safety issues for all users.

Opportunity: Not all streets are used the same way, and their amenities need to reflect that. Different streets should accommodate different users based on the distinct characteristics and land use patterns.
2) Issue: Developers are attuned to the distinct parking characteristic for different land uses, but are more likely to follow existing regulations than challenge parking minimum requirements as it would slow down the approval process.

Opportunity: Giving developers the flexibility to provide less parking is a key aspect of satisfying market demand and increasing affordability.
3) Issue: Fargo and West Fargo's non-vehicular networks are limited and disconnected from one another, preventing people who are walking, biking, or accessing transit from reaching their destination.

Opportunity: Future development needs to be more compact and connected to give people more options when traveling in and around Fargo. Managing street intervals and driveways is a key factor in shaping development pattern.
4) Issue: The amount of parking supplied vastly exceeds demand. All three of the land use types surveyed did not require the amount of parking that was supplied. Creating too much parking diminishes a neighborhood's vitality and walkability, creating sprawled development patterns, and leading to vehicle-dominated neighborhoods.

Opportunity: When planned holistically, parking can accommodate residents, employees, and businesses, without detracting from the vitality of the public realm. Creating policies and regulations that accurately reflect the parking demand, costs, and economic characteristics of a particular location is essential in achieving a balanced parking supply overall.

Recommendations from this study are included in the Corridor Access section of this report.

## Previous and Planned Projects

Various projects are completed, planned, or programmed within and around the study area. The Metro COG 2020-2023 Transportation Improvement Program and the Moorhead 20202025 Capital Improvement Plan identify projects in the community. Figure 2 (Appendix A) identifies future projects in the study area as depicted in the Capital Improvement Plan. The projects include:

- $17^{\text {th }}$ Street N Rehabilitation from $1^{\text {st }}$ Avenue N to $15^{\text {th }}$ Avenue N, Planned 2022
- $15^{\text {th }}$ Avenue N Rehabilitation, Completed 2019
- $4^{\text {th }}$ Avenue $N$ Rehabilitation from $14^{\text {th }}$ Street N to $17^{\text {th }}$ Street N, Planned 2022

November 9， 2020

## Demographics and Trends

This section provides an overview of past and projected demographics in the area，to demonstrate how growth has and will impact demand for facilities．

## Population and Households

The City of Moorhead has experienced significant and steady growth since 2000．Between 2000 and 2018，the population of the City increased by 31．6\％．Based on forecasts developed by the Metro COG in the 2016 Fargo－Moorhead Demographic Forecasts，the population is expected to continue rising and increase $39 \%$ by 2045．This growth rate is higher than that of Minnesota． Table 1 shows the population，number of households，and persons per household for the City of Moorhead．
TABLE T
Growth rates equivalent to those seen in Moorhead have important implications on local transportation systems，including residential roadways such as $17^{\text {th }}$ Street N．Rapid growth can increase rates of travel to Park Christian School and local businesses in the area．The 17 ${ }^{\text {th }}$ Street corridor is an important commuter route as it provides a direct north－south connection for many residents living in the area．As population increases，it is possible that demand for the roadway，public transportation，and improved bicycle／pedestrian facilities will increase．

| Table 1：City of Moorhead－Population and Households |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Category | $\mathbf{2 0 0 0}$ | $\mathbf{2 0 1 0}$ | $\mathbf{2 0 1 8}$ | $\mathbf{2 0 4 5}$ | \％Change 2000－2018 |
| Population | $32,177^{1}$ | $38,065^{2}$ | $42,359^{3}$ | 58,870 | $31.6 \%$ |
| Households | $12,180^{2}$ | $15,274^{2}$ | $15,999^{3}$ | 22,560 | $31.4 \%$ |
| Persons per Household | $2.43^{2}$ | $2.41^{2}$ | $2.42^{3}$ | 2.47 | $\sim 0 \%$ |

${ }^{1}$ Source：City of Moorhead Comprehensive Plan Update（2009）
${ }^{2}$ Source：U．S．Census Bureau
${ }^{3}$ Source：American Community Survey（5－year estimates 2014－2018）
${ }^{4}$ Source： 2016 Fargo－Moorhead Demographic Forecasts

## Age

Like population，age distribution（Table 2）has the capacity to affect transportation usage and demand．In 2018，the median age in Moorhead was approximately 30 years old．This is younger than both Clay County and Minnesota．In 2018，the largest population cohort in Moorhead was between 20－24 years old．This is likely partially due to the colleges and universities in the Fargo－ Moorhead Metropolitan Area．The large number of college－aged students in the City contributes to this younger median age．According to the Fargo－Moorhead Long Range Transportation Plan，this age cohort is the most likely to commute via public transportation． This leads to greater demand for public transportation and other alternate forms of transportation in Moorhead than in the rest of Clay County．

About 23\% of Moorhead's population was under 18 in 2018. While this percentage is smaller than the percentage of Clay County residents that were under 18, it is still indicative of the importance of pedestrian/bicycle safety and programs such as Safe Routes to School. About $12 \%$ of City residents are over 65 years old. This cohort of residents typically shows greater demand for public transit and services such as dial-a-ride transit.

Table 2 - Age Distribution, 2018

| Age | Moorhead | Clay County |
| :--- | :---: | :---: |
| Under 5 | 2,964 | 4,513 |
| $5-9$ | 2,732 | 4,288 |
| $10-14$ | 2,439 | 3,956 |
| $15-19$ | 4,070 | 5,446 |
| $20-24$ | 5,713 | 6,527 |
| $25-29$ | 3,378 | 4,430 |
| $30-34$ | 3,168 | 4,487 |
| $35-39$ | 2,603 | 3,979 |
| $40-44$ | 2,076 | 3,440 |
| $45-49$ | 1,974 | 3,409 |
| $50-54$ | 1,947 | 3,414 |
| $55-59$ | 2,408 | 3,663 |
| $60-64$ | 1,869 | 3,172 |
| $65-69$ | 1,461 | 2,506 |
| $70-74$ | 1,089 | 1,663 |
| $75-79$ | 764 | 1,388 |
| $80-85$ | 670 | 1,065 |
| 85 and Over | 1,070 | 1,455 |
| Median Age | $\mathbf{2 9 . 9}$ | $\mathbf{3 2 . 5}$ |
| \% Under 18 | $\mathbf{2 2 . 6 \%}$ | $\mathbf{2 4 . 1 \%}$ |
| \% Over 65 | $\mathbf{1 1 . 9 \%}$ | $\mathbf{1 2 . 9 \%}$ |

Source: US Census Bureau - ACS 5-year Estimates (2014-2018)

## Employment

The Minnesota Department of Employment and Economic Development (DEED) estimates approximately 14,329 jobs exist in the City of Moorhead as of 2019. The average weekly earnings are \$796 per week. The largest industries are education and health services; trade, transportation, and utilities; and retail trade. $43.7 \%$ of workers are employed in the education and health services industry. 20\% of workers are employed in the trade, transportation, and utilities industry which could indicate increased demand for efficient roadways. Job growth is expected in the City as population increases. This may put strain on commuter routes, such as
$17^{\text {th }}$ Street $N$, if the City does not work to increase roadway efficiency and multimodal transportation options.

In 2018, the majority of Moorhead employees either drove alone or carpooled to work (Table 3). This high reliance on driving single-occupancy vehicles could mean greater numbers of automobile trips as population in the City increases, placing greater demand on the existing transportation infrastructure. Currently, only $5.5 \%$ of employees rely on public transportation, bike, or walk to work. This share could increase as Moorhead executes various plans to improve multimodal transportation in the City.

| Table 3-Means of Transportation to Work, |  |  |
| :--- | :---: | :---: |
| Means | City of Moorhead | Clay County |
| Drove Alone | $79.5 \%$ | $79.6 \%$ |
| Carpooled | $7.7 \%$ | $8.3 \%$ |
| Transit | $1.4 \%$ | $1.0 \%$ |
| Walked | $3.4 \%$ | $3.1 \%$ |
| Bicycle | $0.7 \%$ | $0.6 \%$ |
| Other Means | $0.9 \%$ | $0.8 \%$ |
| Worked at Home | $6.3 \%$ | $6.6 \%$ |
| Mean Travel Time to <br> Work (Minutes) | $\mathbf{1 7 . 3}$ | $\mathbf{1 9 . 6}$ |

Source: US Census Bureau - ACS 5-year Estimates (2014-2018)

## II. Transportation System Characteristics

This section describes elements of the existing transportation network, information related to land use, traffic operations, safety, access, and non-motorized connections. Typical sources of data are called out where applicable.

## Functional Classification

The functional classification system is used to create a roadway network that efficiently collects and distributes traffic from neighborhoods to the state highway system. A successful system coordinates and manages mobility, roadway design, and route alignment as well as seeks to match current and future access and land use with the adjacent roadway's purpose, speeds, and spacing. The functional classification system is comprised of principal arterials, minor arterials, major and minor collectors, and local roadways.

Within the study extents, north of US Highway 10, the $17^{\text {th }}$ Street N corridor serves as a Collector roadway between $1^{\text {st }}$ Avenue North and $15^{\text {th }}$ Avenue North. The existing ADT (vehicles per day) ranges from 1,100 at the north end to 3,500 at the southern end of the corridor, according to MnDOT's 2015 and 2017 traffic counts. South of US Highway 10, and outside the study extents, $17^{\text {th }}$ Street South serves as a Minor Arterial roadway between Main Avenue and $12^{\text {th }}$ Avenue. The $17^{\text {th }}$ Street N corridor is an important north-south connection facilitating travel between local residential streets to minor arterial commercial corridors and ultimately to US Highway 10, a vital east-west Principal Arterial. Figure 3 (Appendix A) shows the functional class network in the study area.

Since $17^{\text {th }}$ Street N is a collector roadway through a developed residential and commercial business area it has several private driveway and local street access points. The east-west local streets that intersect the $17^{\text {th }}$ Street N study area includes $13^{\text {th }}$ Avenue, $11^{\text {th }}$ Avenue, $10^{\text {th }}$ Avenue, $8^{\text {th }}$ Avenue, $7^{\text {th }}$ Avenue, $6^{\text {th }}$ Avenue, $5^{\text {th }}$ Avenue, $3^{\text {rd }}$ Avenue, and $2^{\text {nd }}$ Avenue. $4^{\text {th }}$ Avenue is an east-west Collector roadway that intersects $17^{\text {th }}$ Street N in the study area. $15^{\text {th }}$ Avenue at the north extent and $1^{\text {st }}$ Avenue at the south extent of the study area are both Minor Arterial roadways.

## Study Area Overview

Figure 1 shows the $17^{\text {th }}$ Street N project corridor which extends from the downtown Moorhead business area at $1^{\text {st }}$ Avenue N to the recently improved intersection at $15^{\text {th }}$ Avenue N within the primary residential area. Throughout the $17^{\text {th }}$ Avenue N study area a wide pavement section of 60 feet of curb-to-curb requires a more costly asphalt maintenance program than typical residential roadways. The entire platted right-of-way is approximately 140 feet.

For ease in describing key corridor characteristics in more depth, the corridor is split into two segments based on their different settings and needs.


Segment 1 - 1st Avenue $N$ to $4^{\text {th }}$ Avenue $N$, the commercial and institutional segment, is generally characterized by a low speed, three-lane urban section with a center left turn lane and on-street parking on both sides of the roadway. Pedestrian facilities are incomplete and limited. These three blocks south of $4^{\text {th }}$ Avenue include daily traffic to local businesses and Park Christian School.


Segment $2-4^{\text {th }}$ Avenue $N$ to $15^{\text {th }}$ Avenue $N$, the residential segment with primarily single-family homes, is a low-speed, two-lane urban section with on-street parking on both sides of the roadway. The pedestrian network includes a continuous and connected sidewalk throughout however several ADA ramps are missing or inadequate. The far north part of this segment, from approximately $10^{\text {th }}$ Avenue N to $15^{\text {th }}$ Avenue N , falls within a 500 -year floodplain. Drainage is an issue in this area as sections of curb and gutter have settled, there are limited number of inlets along the corridor, and the boulevard slopes are very flat.


## Land Use and Major Traffic Generators

Existing and future land uses，as well as major traffic generators，within in the study area are shown on Figures 4 and 5 and described below．

## Existing Land Use Patterns

Segment 1－1st Avenue $N$ to $4^{\text {th }}$ Avenue $N$ ，the commercial and institutional segment，is primarily zoned Community Commercial and Public／Institutional．These land uses are associated with adjacent local businesses and Park Christian School．The southern extent of the study area touches the Mixed－Use development area along the south side of $1^{\text {st }}$ Avenue N ．

Segment $2-4^{\text {th }}$ Avenue $N$ to $15^{\text {th }}$ Avenue $N$ ，the residential segment is primarily Low Density Residential and mostly made up of single－family homes．A few multi－family housing units and two local parks exist within 2－3 blocks adjacent on either side of the $17^{\text {th }}$ Street N study corridor．At the north end，on the northeast quadrant of $17^{\text {th }}$ Street N and $13^{\text {th }}$ Avenue N is a zone of High Density Residential that is home to Moorhead Manor，an assisted living facility that provides an intermediate level of care for residents who cannot safely live independently including senior care．The north end of the study corridor touches an area currently zoned as Agricultural on the north side of the north end of $15^{\text {th }}$ Avenue N （County Road 83）．

## Future Land Use Patterns

Segment 1 －1st Avenue $N$ to $4^{\text {th }}$ Avenue $N$ ，the commercial and institutional segment，will only see a proposed land use change at the southwest quadrant of $17^{\text {th }}$ Street $N$ and $4^{\text {th }}$ Avenue $N$ ， which is currently zoned Commercial and is proposed to be zoned Medium Density Mixed Residential．The 2009 Comprehensive Plan Addendum defines Medium Density Residential as a density of 4 to 10 units per acre．The remainder of this study area segment will remain primarily a mix of Community Commercial and Public／Institutional with the southern extent also remaining Mixed Use development along the south side of $1^{\text {st }}$ Avenue N ．

November 9, 2020
Segment 2-4 $4^{\text {th }}$ Avenue $N$ to $15^{\text {th }}$ Avenue $N$, the residential segment will see a change throughout that changes the primary zone from Low Density Residential to Medium Density Mixed Residential. This zoning update will provide for growth in residential density to support the developing Community Commercial and Mixed-Use areas along $1^{\text {st }}$ Avenue N and the nearby downtown. The northeast quadrant of $17^{\text {th }}$ Street $N$ and $13^{\text {th }}$ Avenue $N$, that is home to the Moorhead Manor, is proposed to be changed from High Density Residential to Medium Density Residential. At the north end of the study corridor, north of $15^{\text {th }}$ Avenue N , the existing Agricultural zone is proposed to be changed to Industrial.

## Major Traffic Generators

Segment 1 - 1st Avenue $N$ to $4^{\text {th }}$ Avenue $N$, the commercial and institutional segment, results in a dense concentration of uses that drive major local and regional traffic. Traffic generation is further increased by direct access to $1^{\text {st }}$ Avenue N and close proximity access to US Highway 10.

The large Park Christian School zone generates high peak hour volumes of bus, student driver, and parent drop off and pick up traffic. D-S Beverages generates heavy commercial truck traffic between their location just north of $2^{\text {nd }}$ Avenue and US Highway 10.

Segment 2 - $4^{\text {th }}$ Avenue $N$ to $15^{\text {th }}$ Avenue $N$, the residential segment is a major local traffic trip generator as it serves connections to several single-family, multiple vehicle households. Future increased residential density will increase local traffic trips through the study area. North of $15^{\text {th }}$ Avenue N , the proposed Industrial area is most conveniently served by US Highway 75 and $15^{\text {th }}$ Avenue N (County Road 83 ) and should result in little to no heavy truck traffic on $17^{\text {th }}$ Street N .

## Existing Traffic Operations

Turning movement count data was collected along $17^{\text {th }}$ Street $N$ at the intersections of $15^{\text {th }}$ Avenue, $8^{\text {th }}$ Avenue, and $1^{\text {st }}$ Avenue in September 2020. Park Christian School was in session when the count was taken. The traffic counts were compared to previous count data available to determine if modifications were to be made to the data or if the count was reflective of normal traffic. Traffic volumes at $15^{\text {th }}$ Avenue were found to be normal, but the traffic volumes at $8^{\text {th }}$ Avenue and $1^{\text {st }}$ Avenue were found to be lower than previous count data indicated so these counts were increased accordingly.

An analysis of existing AM and PM peak hour intersection operations was completed in Synchro/SimTraffic. All intersections in the study area are stop controlled. 15th Avenue at the north extent and 1st Avenue at the south extent of the study area have stop controls that stop traffic on 17th Street N and give right of way to the east-west Minor Arterial roadways. 8th Avenue at 17th Street N is all way stop controlled. All other intersections are side street stop controlled giving right of way to 17th Street N traffic.

The average intersection delay is a volume-weighted average of delay experienced by all motorists entering the intersection on all intersection approaches. Intersections and each intersection approach are given a ranking from Level of Service (LOS) A through LOS F. LOS A indicates the best traffic operation, with vehicles experiencing minimal delays. LOS A through $D$ are generally perceived to be acceptable to drivers. LOS E indicates that an intersection is operating at, or very near, its capacity and that travelers experience considerable delays. LOS F indicates an intersection where demand exceeds capacity resulting in substantial delays. Table 4 shows the intersection delay as well as the maximum delay of all movements at each intersection.

| Table 4 - Existing Trafific Operations Analysis |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Intersection | Peak <br> Hour | Intersection (Delay* - LOS) | Maximum Movement |  |
|  |  |  | Mvmt | Delay* - LOS |
| 1st Ave \& 17th St <br> Two-Way Stop Controlled | AM | 3-A | SBL | 26-D |
|  | PM | 2-A | SBL | $22-\mathrm{C}$ |
| 17th St \& 8th Ave All-Way Stop Controlled | AM | 6-A | WBT | 8-A |
|  | PM | 6-A | NBT | 7-A |
| 17th St \& 15th Ave <br> Two-Way Stop Controlled | AM | 2-A | NBL | 9-A |
|  | PM | 2-A | NBL | 11-B |

*Delay is in seconds per vehicle
Based on the existing conditions operational analysis, all intersections operate with LOS A overall. The southbound left at 1st Avenue and 17th Street N operates with LOS D during the AM peak hour and LOS C during the PM peak hour. All other movements operate with LOS A or B.

## Future No-Build Traffic Conditions

Traffic forecasts were developed analyzing historical growth, household/population/ employment projections anticipated for the area, and future land use projections. Forecasted 2045 AM and PM peak hour intersection operations were also completed in Synchro/SimTraffic. The results are show in Table 5.

Table 5-2045 No Build Traffic Operations Analysis

| Intersection | Peak <br> Hour | Intersection (Delay* - LOS) | Maximum Movement |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Mvmt | Delay* - LOS |
| 1st Ave \& 17th St | AM | 6-A | SBL | 113 - F |
| Two-Way Stop Controlled | PM | 4-A | SBL | $56-\mathrm{F}$ |
| 17th St \& 8th Ave | AM | 5-A | WBT/SBT | 6-A |
| All-Way Stop Controlled | PM | 5-A | NBL | 6-A |


| 17th St \& 15th Ave | AM | 3-A | NBL | 12-B |
| :---: | :---: | :---: | :---: | :---: |
| Two-Way Stop Controlled | PM | 2-A | NBL | 14-B |

*Delay is in seconds per vehicle
The results of the 2045 No Build operational analysis indicate that the intersection delay overall remains acceptable with LOS A during both peak hours at all three intersections analyzed. The southbound left movement at $1^{\text {st }}$ Avenue and $17^{\text {th }}$ Street N is anticipated to operate with LOS F during both peak hours with an average delay of nearly two minutes per vehicle during the AM peak hour and nearly one minute per vehicle during the PM peak hour. All other movements operate with LOS C or better.

## Crash History

A crash analysis was completed for the study area to understand the existing safety concerns. A segment crash analysis was completed for the $17^{\text {th }}$ Street N corridor from $1^{\text {st }}$ Ave N to $15^{\text {th }}$ Ave N in addition to intersection crashes. Crash data from the most recent five years (2015-2019) was evaluated. The crash history is summarized in Figure 6.

The key results of the crash analysis for the timeframe between 2015-2019 include:

- 13 intersection crashes
- 9 of the 13 crashes were right angle crashes
- There were no reported fatal crashes
- There was one reported non-fatal severe crash
- There were no reported pedestrian or bicycle crashes
- The intersection of $1^{\text {st }}$ Ave N and $17^{\text {th }}$ Street N operates outside the normal range compared to similar intersection statewide for total crash rate as well as fatal and serious crash rate with one serious injury crash.
- All other intersections operate within the normal range compared to similar intersections statewide.
- The overall corridor operates within the normal range compared to other two lane roadways with similar ADT.

A ten-year (2010-2019) crash analysis was completed for fatal crashes in addition to crashes involving a pedestrian and/or bicycle. There was a possible injury bicycle crash at the intersection of $1^{\text {st }}$ Ave N and $17^{\text {th }}$ Street N in 2011. The bicyclist was crossing $17^{\text {th }}$ Street N and was hit by a vehicle along southbound $17^{\text {th }}$ Street N attempting to turn right onto $1^{\text {st }}$ Ave N . There is a sidewalk along the north side of $1^{\text {st }}$ Ave N where the bicyclist was crossing, but the crosswalk is not marked. There were no reported fatal crashes or pedestrian crashes in the last ten years.

Tables 6 and $\mathbf{7}$ below summarize the total crash rate findings for the intersections and segment overall.

## Table 6 - Intersection Crash Summary (2015-2019)

| Intersection | Total <br> Crashes | Severe <br> Crashes (K <br> $\mathbf{+ A )}$ | Actual <br> Crash Rate* | Statewide <br> Average | Critical <br> Rate** | Critical <br> Index*** |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1st Ave N \& 17th St N | 7 | 1 | 0.29 | 0.09 | 0.27 | 1.09 |
| 2nd Ave N \& 17th St N | 1 | 0 | 0.16 | 0.09 | 0.47 | 0.33 |
| 4th Ave N \& 17th St N | 1 | 0 | 0.19 | 0.09 | 0.52 | 0.36 |
| 6th Ave N \& 17th St N | 1 | 0 | 0.23 | 0.09 | 0.57 | 0.40 |
| 7th Ave N \& 17th St N | 1 | 0 | 0.17 | 0.09 | 0.50 | 0.35 |
| 8th Ave N \& 17th St N | 1 | 0 | 0.23 | 0.24 | 0.96 | 0.24 |
| 11th Ave N \& 17th St N | 1 | 0 | 0.50 | 0.09 | 0.88 | 0.57 |

## Table 7 - Segment Crash Summary (2015-2019)

| Segment | Total <br> Crashes | Severe <br> Crashes (K <br> + A) | Actual <br> Crash Rate* | Statewide <br> Average | Critical <br> Rate** | Critical <br> Index*** |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17th St N from 1st Ave N <br> to 15th Ave N | 13 | 1 | 2.09 | 1.32 | 2.59 | 0.81 |

*Crash Rate - The number of crashes per million entering vehicles.
**Critical Rate - A statistical comparison based on similar intersections statewide.
***Critical Index - Reports the magnitude of the difference between the crash rate and the critical rate. If the critical index is greater than 1 this indicates that the intersection is operating outside the expected range when compared to similar intersection statewide.

## Corridor Access

The "Fargo/West Fargo Parking and Access Study" outlines recommended access spacing for various roadway types. While $17^{\text {th }}$ Street N is located within the City of Moorhead, the access study provides guidance that is applicable to the project corridor. The primary, secondary, and private accesses are identified in Figure 3. The "Fargo/West Fargo Parking and Access Study"
provides recommended spacing between signals, unsignalized full accesses, right-in/right-outs, and driveways based on roadway type.

The access study identifies seven roadway types: regional arterial, commercial arterial, mixed use arterial, mixed use collector, residential collector, mixed use neighborhood, and residential neighborhood. The functional classification of $17^{\text {th }}$ Street N is a collector, but the land use changes at $4^{\text {th }}$ Ave $N$ with the south portion of the corridor serving commercial and public/ institutional uses and the northern portion serving residential homes. Based on the land uses, $17^{\text {th }}$ Street N from $1^{\text {st }}$ Ave N to $4^{\text {th }}$ Ave N was analyzed as a mixed-use collector roadway and $17^{\text {th }}$ Street $N$ from $4^{\text {th }}$ Ave $N$ to $15^{\text {th }}$ Ave $N$ was analyzed a residential collector. The recommended spacing between unsignalized full access intersections is 300-400 feet for both roadway types. Table 8 shows the spacing between intersections along $17^{\text {th }}$ Street N .

## Table 8 - Full Access Intersection Spacing

| Full Access Intersections | Actual <br> Spacing (ft) | Recommended <br> Spacing (ft) | Meets Spacing <br> Recommendation |
| :---: | :---: | :---: | :---: |
| 1st Ave N to 2nd Ave N | 330 | $300-400$ | Yes |
| 2nd Ave N to 3rd Ave N | 365 | $300-400$ | Yes |
| 3rd Ave N to 4th Ave N | 340 | $300-400$ | Yes |
| 4th Ave N to 5th Ave N | 340 | $300-400$ | Yes |
| 5th Ave N to 6th Ave N | 340 | $300-400$ | Yes |
| 6th Ave N to 7th Ave N | 340 | $300-400$ | Yes |
| 7th Ave N to 8th Ave N | 350 | $300-400$ | Yes |
| 8th Ave N to 10th Ave N | 660 | $300-400$ | Yes |
| 10th Ave N to 11th Ave N | 170 | $300-400$ | No |
| 11th Ave N to 13th Ave N | 1080 | $300-400$ | Yes |
| 13th Ave N to 15th Ave N | 380 | $300-400$ | Yes |

Table 8 shows that the recommended spacing is met between all full access intersection except between $10^{\text {th }}$ Ave N and $11^{\text {th }}$ Ave N . It should be noted that the intersections of $10^{\text {th }}$ Ave N and

November 9, 2020
$13^{\text {th }}$ Ave N are offset. The $10^{\text {th }}$ Ave N intersection approaches are offset by approximately 100 ft . The $13^{\text {th }}$ Ave N intersection approaches are offset by approximately 40 ft .

The spacing between driveways was also analyzed along $17^{\text {th }}$ Street N . The recommended driveway spacing differs between the two roadway types. For a mixed-use collector roadway, driveways are recommended to be spaced 200 ft apart. For a residential collector roadway, driveways are recommended to be spaced 50-100 ft apart. Table 9 shows the spacing between driveways along $17^{\text {th }}$ Street $N$. Since there were multiple driveways between each intersection a range in spacing was listed.

| Table 9--Driveway Spacing |  |  |  |
| :---: | :---: | :---: | :---: |
| Intersections | Actual <br> Driveway <br> spacing (ft) | Recommended <br> Driveway <br> Spacing (ft) | Meets Spacing <br> Recommendation |
| 1st Ave N to 2nd Ave N | $30-115$ | 200 | No |
| 2nd Ave N to 3rd Ave N | $20-110$ | 200 | No |
| 3rd Ave N to 4th Ave N | $20-200$ | 200 | No |
| 4th Ave N to 5th Ave N | $30-110$ | $50-100$ | No |
| 5th Ave N to 6th Ave N | $40-105$ | $50-100$ | No |
| 6th Ave N to 7th Ave N | $30-110$ | $50-100$ | No |
| 7th Ave N to 8th Ave N | $30-70$ | $50-100$ | No |
| 8th Ave N to 10th Ave N | $30-85$ | $50-100$ | No |
| 10th Ave N to 11th Ave N | $15-90$ | $50-100$ | No |
| 11th Ave N to 13th Ave N | $5-105$ | $50-100$ | No |
| 13th Ave N to 15th Ave N | $55-190$ | $50-100$ | Yes |

Table 9 indicates than the only segment along $17^{\text {th }}$ Street N with all driveways spaced such that they meet the recommendation for the designated roadway type is between 13th Ave N and $15^{\text {th }}$ Ave N .

The MnDOT Access Management Manual was also utilized to evaluate the corridor spacing. MnDOT provides guidance based on facility type and environment. For an urban collector the recommended spacing between two primary full access intersections is 660 ft . For a collector in an urban core environment the recommended spacing is 300-660 ft. For collector roadways there is not a specific driveway spacing recommended.

## Pedestrian and Bicycle Connections

Existing and planned pedestrian and bicycle connections along the $17^{\text {th }}$ Street N corridor are shown in Figure 7. A planned bicycle facility on $17^{\text {th }}$ Street $N$ would connect to two local bicycle facilities at $2^{\text {nd }}$ Ave N and $15^{\text {th }}$ Ave N . These two facilities connect the corridor to the Red River, commercial and employment opportunities in downtown Moorhead, Fargo, Dilworth, and North Dakota State University.

Additionally, the planned facility on $17^{\text {th }}$ Street N would improve connections for bicycle commuters and recreational bicyclists between Highway 10 and North Moorhead. There is also a planned bicycle facility along $7^{\text {th }}$ Ave $N$ which would cross $17^{\text {th }}$ Street $N$ and further improve bicycle connections in the area.
$17^{\text {th }}$ Street N includes pedestrian sidewalks from $4^{\text {th }}$ Ave N to $15^{\text {th }}$ Ave N , running along the residential section of the corridor. Pedestrian facilities do not exist along the corridor from $1^{\text {st }}$

November 9, 2020
Ave N to $4^{\text {th }}$ Ave N except for recent improvements near Park Christian School. There are several instances of ADA pedestrian ramps in poor condition or absent at intersections along $17^{\text {th }}$ St. These are listed below:

- Northwest corner of $17^{\text {th }}$ St and $4^{\text {th }}$ Ave, crossing $17^{\text {th }}$ St
- Northwest and Southwest corners of $17^{\text {th }}$ St and $5^{\text {th }}$ Ave, crossing $17^{\text {th }}$ St and $5^{\text {th }}$ Ave
- Northeast corner of $17^{\text {th }}$ Street N and $7^{\text {th }}$ Ave, crossing $17^{\text {th }}$ Street N
- Northwest corner of $17^{\text {th }}$ Street N and $8^{\text {th }}$ Ave, crossing $17^{\text {th }}$ Street
- Southeast corner of $17^{\text {th }}$ Street and $11^{\text {th }}$ Ave, crossing $17^{\text {th }}$ Street


## Transit Service

MATBUS, Fargo-Moorhead Metropolitan Area's public transportation service, offers 23 fixed routes, in addition to door-to-door services for people with disabilities and senior citizens. Figure 8 shows the transit routes and bus stops offered along and near the $17^{\text {th }}$ Street N corridor. Route 4 , which runs along $17^{\text {th }}$ Street from $7^{\text {th }}$ Ave N to $13^{\text {th }}$ Ave N , operates Monday through Friday from 6:15 AM to 11:15 PM and Saturdays from 7:15 AM to 11:15 PM. Service along the route is scheduled for every 30 minutes. The route runs Northbound along $17^{\text {th }} \mathrm{St}$, turning onto the corridor at $7^{\text {th }}$ Ave and stopping five times before turning off the corridor at $13^{\text {th }}$ Ave. Route 4 connects the corridor to both downtown Moorhead and downtown Fargo. From here, transit riders can reach many important destinations in the cities, including Minnesota State University - Moorhead, North Dakota State University, and the West Acres Shopping Center.

In May 2020, an extra bus was temporarily added to Route 4 during peak ridership hours 10:00 AM to 7:00 PM - to assist riders in socially distancing while on the bus. Having trips available every 20 minutes, instead of every 30 minutes, allows riders to have more options for travel times and prevents crowding on buses.

## Maintenance

The existing pavement cross section on the $17^{\text {th }}$ Street N corridor is approximately 60 feet curb-to-curb from $1^{\text {st }}$ Ave N to $15^{\text {th }}$ Ave N . This width provides unique challenges compared to similar two and three-lane roadways in the city. Existing bituminous surface maintenance requires more materials, time, and cost. Likewise, winter roadway maintenance requires additional sand/salt material and snowplow trips compared to similar roadways.

## III. Social, Economic, and Environmental (SEE) Considerations

An environmental screening was completed for the $17^{\text {th }}$ Street N corridor. The following section documents findings related to potential environmental impacts within the footprint of the corridor to be used as a primer for required National Environmental Policy Act (NEPA) and state environmental reviews later in the project and to inform and evaluate corridor alternatives. The following key findings in Table 10 are summarized from the environmental screening attached in Appendix B.

| Table 10 - Environmental Screening Summary |  |  |
| :--- | :--- | :--- |
| Topic | Existing and Planned Conditions | Considerations |
| Minority <br> Populations | Block groups directly North and South of <br> $17^{\text {th }}$ St and the block group West of the <br> corridor beginning at 13 $3^{\text {th }}$ St are minority <br> population block groups and considered <br> environmental justice populations. | Staff will work with the Study <br> Review Committee to identify how <br> to best reach out to these <br> populations near the corridor. |
| Low-Income <br> Populations | The block group East of the corridor <br> beginning at 13 th St is a low-income <br> population block group and considered an <br> environmental justice population. | Staff will work with the Study <br> Review Committee to identify how <br> to best reach out to these <br> populations near the corridor. |
| Language | 5 percent of the population speaks a <br> language other than English or speaks <br> English less than "very well." | Staff will offer translation services to <br> those with limited English <br> proficiency. |
| Age | 24 percent of the population is under 18 <br> years old and 16 percent of the population <br> is over 65 years old. | Staff will ensure outreach includes <br> local schools and retirement homes, <br> specifically Moorhead Manor, <br> located on the corridor. |
| Housing | 16 percent of housing is renter occupied <br> and 44 percent of renters are cost <br> burdened. | Staff will send all future project <br> mailers to each unit in multiple <br> family residences. |

November 9, 2020

| Topic | Existing and Planned Conditions | Considerations |
| :---: | :---: | :---: |
| Cover Types | The project area is entirely developed land, ranging from low- to high-density. Construction activities may impact boulevard tree cover. | Impacts to native plant communities, landscape vegetation, functional vegetation, high value vegetation, hazard trees. |
| Land Use | South portion of the corridor is zoned for community commercial and public/institutional uses. North portion of the corridor is mostly medium density mixed residential. | Land use changes are allowing for increased residential and mixeduse density. |
| Geology, Soils, and Topography | 97 percent of soil along the corridor is urban land or urban land - aquerts complex with a 0 to 2 percent slope. | Compatibility with construction/drainage design |
| Water Resources | Red River runs one mile from the corridor and County Ditch No. 41 is present near the project area to control flooding. The northern part of the corridor is within a 500-year floodplain. | Impacts need to be avoided/limited per regulatory requirements |
| Contamination/ Hazardous Materials/Wastes | There are 13 potentially contaminated sites in the project area, most being hazardous waste sites or construction stormwater sites. | Potential construction delays/costs and potential cleanup liability |
| Fish, Wildlife, <br> Plant <br> Communities, and <br> Sensitive <br> Ecological <br> Resources | The study area does not include NWI Wetlands, impaired lakes or streams, rare natural features, or MnDNR native plant communities. | Federal and state designations, coordination and review requirements, potential mitigation Native plant communities, landscape vegetation, functional vegetation, high value vegetation, and hazard trees. |
| Transportation | There are several potential noise receptors adjacent to the corridor consisting of single and multi-family residential. Potential noise receptors were identified using criteria outlined in the Analysis and Abatement Guidance for Highway Traffic Noise Regulation provided | Identify noise receptors and comply with federal and state requirements. |

## Table 10 - Environmental Screening Summary

| Topic | Existing and Planned Conditions | Considerations |
| :--- | :--- | :--- |
|  | by the Federal Highway Administration <br> (FHWA). The need for a noise analysis will <br> be highly unlikely due to the low volume <br> and speed local street environment but <br> final determination will be once individual <br> improvement projects are identified. |  |
| Utilities | Sanitary sewer pipe is present throughout <br> the study area primarily running through <br> the center of the roadway. Storm pipes <br> are present throughout the study area <br> primarily running along the east side of <br> the roadway. Watermains are present <br> throughout the corridor area primarily <br> running along the east side of the <br> roadway. Electrical distribution systems <br> are present in the corridor both overhead <br> and underground. Overhead and street <br> lights are primarily on the west side of the <br> corridor with numerous electrical <br> crossings in the study area. | Conflicts with utilities may increase <br> schedule and cost requirements. |
| Drainage | Due to relatively flat topography present <br> in the area, storm runoff along the <br> roadway profile in street gutters is <br> inconsistent. Areas of ponding occur <br> during spring melt and storm events. <br> Anecdotal evidence of ponding on <br> adjacent properties has also been <br> received, but not observed. | Existing drainage systems, sensitive <br> waters and regulatory <br> requirements |
| Visual | The corridor appears as a low-density <br> commercial corridor in the southern <br> portion and as a single-family residential <br> street in the northern portion. | Impacts to and including scenic <br> intrusion, grading, trails, bridges, <br> walls, lighting, fencing, railings, <br> vegetation modifications |
| Cumulative and <br> Potential Effects | Air, noise, and cumulative potential effects <br> will be considered in a future NEPA <br> analysis once a project is funded. | Comply with federal noise and <br> impacts to air quality |

November 9, 2020

## IV. Summary of Issues

Below are a summary of issues and topics discussed throughout this Existing Conditions Report.

- Capacity Needs: The existing operational analysis indicates that there are no capacity issues along the $17^{\text {th }}$ Street N corridor with current volumes. The 2045 No Build analysis indicates that the southbound left turn at $17^{\text {th }}$ Street N and $1^{\text {st }}$ Avenue is anticipated to operate with excessive delay during both peak hours. All other movements are anticipated to operate with acceptable delay.
- Safety: The intersection of 1 st Ave N and 17 th Street N operates outside the normal range compared to similar intersections statewide for both total number of crashes and for fatal and serious crashes with one serious injury crash. There were 13 crashes in the project area over the last five years (2015-2019). Right angle crashes were the most common accounting for 9 of the 13 crashes. No fatal or pedestrian and bicycle crashes were reported (2015-2019) however there was one possible injury bicycle crash reported in (2010-2019).
- System Linkages: Within the study extents, north of US Highway 10 , the $17^{\text {th }}$ Street N corridor serves as a Collector roadway between $1^{\text {st }}$ Avenue North and $15^{\text {th }}$ Avenue North. The $17^{\text {th }}$ Street N corridor is an important north-south connection facilitating travel between local residential streets to $1^{\text {st }}$ Avenue N , a minor arterial commercial corridor, and ultimately to US Highway 10, a vital east-west Principal Arterial. Nine Local Streets, two Minor Arterials, and one Collector Street intersects the $17^{\text {th }}$ Street N study corridor. The $1^{\text {st }}$ Avenue N corridor and Downtown Moorhead has experienced infill and redevelopment growth and serves as a regional hub for health care, education, retail, agriculture, and industry.
- Local Connectivity \& Accessibility: The $17^{\text {th }}$ Street N corridor serves connectivity to commercial businesses and regional institutional uses (Park Christian School). Connectivity and accessibility are important for both vehicle and pedestrian traffic to allow these uses, and future uses, to thrive in addition to providing the neighborhood livability the current and future demographics desire. Current vulnerable populations include elderly and youth populations.
- Consistency with Regional and Local Plans: Many previous plans and studies have been completed for the study's system corridors, in which many needs and opportunities were identified. Previous planning efforts have identified recommendations of land use changes for increased density, wholistic enhanced bicycle and pedestrian accommodations, access to and service level of transit, emerging transportation trends, life-cycle maintenance needs and considerations, environmental sustainability, new

November 9, 2020
community gathering spaces, community arts and cultural identity, and increased retail and recreational opportunities.

- Modal Interrelationships: The study area is served by an incomplete and mostly nonADA compliant pedestrian sidewalk system and two east-west local bicycle facility connections that intersection $17^{\text {th }}$ Street N at $15^{\text {th }}$ and $1^{\text {st }}$ Avenue. These bicycle facility connections provide both pedestrian and bicycle connections to and from $17^{\text {th }}$ Street N . A planned bicycle facility along the $17^{\text {th }}$ Street N study area would improve connections for bicycle commuters and recreational bicyclists between US Highway 10 and North Moorhead. A complete and accessible pedestrian sidewalk system will be necessary to provide neighborhood connectivity and access to an existing MATBUS transit route, on $17^{\text {th }}$ Street, to Downtown Moorhead and Downtown Fargo.
- Environmental Considerations: There are some social, economic, and environmental (SEE) resources in proximity to the planning area that need to be considered that include environmental justice populations, potentially contaminated sites, and existing boulevard trees. Any wildlife displaced by any projects or construction resulting from the completion of this study will likely relocate to suitable nearby areas.
- Access Spacing. Since $17^{\text {th }}$ Street N is a collector roadway through a developed residential and commercial business area it has several private driveway and local street access points. The access spacing analysis indicated that all full access intersections meet the recommended spacing except between $10^{\text {th }}$ Ave N and $11^{\text {th }}$ Ave N . The spacing of driveways along the corridor, however, does not meet the recommended spacing lengths except between $13^{\text {th }}$ Ave N and $15^{\text {th }}$ Ave N .


##  <br> $17^{\text {TH }}$ STREE

# 17 $^{\text {th }}$ Street $\mathbf{N}$ Corridor Study FINAL Environmental Screening 

| Date: | November 9, 2020 |
| :--- | :--- |
| To: | Luke Champa, Assistant Planner, FM Metro COG |
|  | Dan Farnsworth, Transportation Planner, FM Metro COG |
| From: | Cody Christianson, PE, Project Manager, Bolton \& Menk, Inc. <br>  <br>  <br> Jim Mertz, GISP, Project Planner, Bolton \& Menk, Inc. |
| Subject: | Environmental Screening Summary <br>  <br>  <br>  <br> Fargo-Moorhead Metropolitan Council of Governments (Metro COG) |

## Table of Contents

I. Introduction ..... 4
Project Area ..... 4
II. Environmental Justice Analysis ..... 4
Minority Populations ..... 7
Low-Income Populations ..... 7
Education ..... 7
Language ..... 7
Age ..... 8
Housing ..... 8
Disability ..... 8
III. Environmental Considerations ..... 9
Cover Types ..... 8
Land Use. ..... 9
Geology, Soils, and Topography/Landforms ..... 9
Water Resources ..... 9
Contamination/Hazardous Materials/Wastes ..... 9
Fish, Wildlife, Plant Communities, and Sensitive Ecological Resources ..... 10
Transportation ..... 10
Utilities. ..... 11
Visual ..... 12
Air, Noise, and Cumulative Potential Effects ..... 12
IV. References ..... 12

## Tables

Table 1：Environmental Justice Populations in $17^{\text {th }}$ Street $N$ Project Area
Table 2：Soil Survey
Table 3：Contamination／Hazardous Materials／Waste
Figures
Figure 1：Project Area
Figure 2：Social Features
Figure 3：Existing Land Use
Figure 4：Future Land Use

November 9, 2020

## I. Introduction

This is a preliminary screening of the potential environmental impacts within the footprint of the $17^{\text {th }}$ Street N corridor project. The purpose of this document is to identify potentially sensitive areas by considering all National Environmental Policy Act (NEPA) protected social, economic, and environmental categories. This screening will be used as a primer for required NEPA and state environmental reviews later in the project and will be used to inform and evaluate corridor alternatives. This document does not accommodate the necessary NEPA process or state environmental review process, which would occur once a project becomes funded.

## Project Area

Figure 1 shows the $17^{\text {th }}$ Street N project corridor which extends from the downtown Moorhead business area at $1^{\text {st }}$ Avenue N to the recently improved intersection at $15^{\text {th }}$ Avenue N within the primary residential area. The $17^{\text {th }}$ Street corridor transitions from a residential two-lane road to a three-lane section at $4^{\text {th }}$ Avenue $N$. The three blocks south of $4^{\text {th }}$ Avenue include daily traffic to local businesses and Park Christian School. Continuing north from $4^{\text {th }}$ Avenue, the $17^{\text {th }}$ Street corridor transitions to a residential setting, where adjacent land uses are primarily single-family homes. As a major collector roadway, the $17^{\text {th }}$ Street corridor is important for area residents and the businesses it serves. An important commuter route, it provides a direct north-south connection. The corridor includes 140 feet of platted right-of-way and approximately 60 feet of curb-to-curb pavement.

The north part of the corridor, from approximately $10^{\text {th }}$ Avenue to $15^{\text {th }}$ Avenue, fall within a 500-year floodplain. This part of the corridor falls within the residential segment of the study area.

## II. Environmental Justice Analysis

## Background

Executive Order 12898 (1994), Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations, must be addressed if impacts result in an adverse and disproportionately high impact on minority or low-income communities. Minority and lowincome populations are "readily identifiable groups...who live in geographic proximity, and if circumstances warrant, geographically dispersed/transient persons...who will be similarly affected by a proposed DOT program, policy or activity" (U.S. DOT, 2012).

Environmental justice populations are minority and/or low-income populations that are meaningfully greater than those of the general population. "Meaningfully greater" for
environmental justice populations is generally defined as one where the minority or lowincome population is either 10 percent higher than the county average, or greater than 50 percent of the total geographic unit, or determined based on input from local officials or stakeholders (FHWA Office of Human Environment, 2012).

In addition to minority and low-income populations, the EPA also uses education, language, and age demographic indicators to determine a community's potential susceptibility to environmental impacts associated with construction activities. In addition to these indicators, this analysis also looks at housing indicators to determine susceptibility to environmental impacts.

## Demographics

Overview
The 17th Street Corridor is located in the City of Moorhead, Minnesota. In 2018, the City had a population of 42,359 . The entire corridor falls in MN Census Tract 201, which had a population of 5,184 in 2017. For the purpose of the environmental justice analysis, the study area was increased to the entire MN Census Tract 201. Because $17^{\text {th }}$ Street N is a North-South commuter corridor for residents in the area, environmental justice populations throughout the census tract have the potential to experience disproportional impacts during construction activities along the corridor. Permanent impacts of projects along the corridor are intended to improve the transportation corridor for all users. There are 5 block groups in the MN Census Tract 201 which have a population of 5,075 people according to the 2017 American Community Survey 5year Estimates (2017) (Table 1).

## Table 1: Environmental Justice Populations in 17 ${ }^{\text {th }}$ Street $\mathbf{N}$ Project Area



Source: US Census Bureau - ACS 5-year Estimates (2014 - 2018)

November 9, 2020

## Minority Populations

Minority populations includes individuals who identify as Hispanic or Latino, Black or African American, Asian American or Pacific Islander, Native American, some other race, or two or more races, as defined by the U.S. Census Bureau. A minority population is considered an environmental justice population for this analysis if a block group in the study area contains a 10 percent higher concentration of minorities that the county average. Since 13 percent of Clay County's populations are considered minorities, we are interested in block groups in the MN Census Tract 201 that have 23 percent or greater minority populations. There are seven block groups above 23 percent minority populations (Figure 2) within MN Census Tract 201 that can be considered environmental justice populations. There are several more block groups near the study area and both the block groups directly North and South of the $17^{\text {th }}$ Street N corridor and the block group West of the corridor beginning at $13^{\text {th }}$ Street N are minority population block groups and considered environmental justice populations. Staff will work with the Study Review Committee to identify how to best reach out to minority populations near the corridor.

## Low-Income Populations

Low-income is approximated by census reporting of individuals with income below 200 percent of the poverty level. A low-income population is defined as one where the block group contains a 10 percent higher concentration of low-income individuals than the county average. Since the Clay County average for low-income individuals is 12 percent, we are interested in block groups in the MN Census Tract 201 that have 22 percent or greater minority populations. Using this metric, the census block group on the East side of census tract 201 (Figure 2) and can be considered an environmental justice population. Staff will work with the Study Review Committee to identify how to best reach out to low-income populations near the corridor.

## Language

Nearly 6 percent of the population in MN Census tract 201 speaks a language other than English or and over 4 percent that speaks English less than "very well." This is in comparison to the Clay County average of just over 4 percent of the population that speaks a language other than English or less than 2 percent that speaks English less than "very well." It will be important for the project team to work with residents to identify which languages, other than English, are spoken most in the community. Staff should offer translation services to those with limited English proficiency.

November 9, 2020

## Age

23.5 percent of the population in census tract 201 is under 18 years old. To reach this population and their families, the project team can partner with schools in the area to host informational booths or open house events targeted at families of students.

16 percent of the population in this census tract is over 65 years old. The staff should spend time completing outreach at Moorhead Manor, a retirement home along the corridor. Elderly populations can be disproportionately affected by transportation projects. Residents of Moorhead Manor are more likely to be heavily affected due to the location of the retirement home along the corridor.

## Housing

Although not an Environmental Justice population, staff should be aware of where renters in the study area live. About 16 percent of housing in census tract 201 is renter occupied. Of this 18 percent, about 44 percent are cost burdened. To be cost burdened, a person or family must be spending more than 30 percent of their income on rent or mortgage each month.

The project team should engage specifically with renters by sending all future project mailers to each unit in multiple family residences.

## Disability

Although not an Environmental Justice population, staff should be aware of residents in the project area living with a disability. 13 percent of the population in census tract 201 for whom disability status is determined has a disability. Special attention should be paid to engaging this population during the design phase of any projects along the corridor.

## III. Social, Economic and Environmental Impacts (SEE)

The information below will serve as a primer for required NEPA and state environmental reviews for any future project along the $17^{\text {th }}$ Street N corridor and will be used to inform and evaluate corridor alternatives. The following sections document the environmental conditions along and approximately one block East and West of $17^{\text {th }}$ St N from $1^{\text {st }}$ Ave N to $15^{\text {th }}$ Ave N .

## Cover Types

The project area is entirely developed land. It ranges from low- to high-density along the corridor. Existing boulevard trees may be impacted by potential solutions and associated construction activities.

November 9, 2020

## Land Use

Existing land uses along the corridor are shown in Figure 3 below. At the time of this report, the City of Moorhead was in the process of updating their future land use plans. When the process is complete, the updated future land use plan will be reflected here and in other relevant $17^{\text {th }}$ Street N Study documentation.

The southern section of $17^{\text {th }}$ Street, from $1^{\text {st }}$ Avenue to $4^{\text {th }}$ Avenue, is majority community commercial or public/institutional. This section of the corridor is the location of Park Christian School, Bridgepointe Community Church, and multiple businesses including Burger Time, Stenerson Bros Lumber, D-S Beverages, Lloyd's Auto Body Inc, All Star Bowl, and Northside Truck Repair.

The northern section of $17^{\text {th }}$ Street, from $4^{\text {th }}$ Avenue to $15^{\text {th }}$ Avenue, has been designated as mostly medium density mixed residential and medium density residential at the location of Moorhead Manor between $13^{\text {th }}$ Avenue and $15^{\text {th }}$ Avenue. This section of the corridor is comprised on mostly single-family houses.

## Geology, Soils, and Topography

Soil data were obtained from the NRCS Web Soil Survey for Clay County. Table 2 lists the three different soils present along the project corridor. This information will be used to assess various soil limitation such as hydric characteristics and the limitations for road improvements. There is no change in elevation along the corridor.

| Table 2 - Soil Survey |  |  |
| :--- | :---: | :---: |
| Soil Type | Slopes | Acres |
| Urban Land - Aquerts complex | 0 to 2 percent | 75.7 |
| Urban Land | 0 to 2 percent | 21.7 |
| Bearden Silty Clay Loam | 0 to 2 percent | 3.1 |

## Water Resources

There are no water resources in along the $17^{\text {th }}$ Street N corridor, but Red River runs approximately one mile from corridor. County Ditch Number Forty-One is also present near project area to control flooding. The northern part of corridor, from approximately $10^{\text {th }}$ Avenue to $15^{\text {th }}$ Avenue is within a 500 -year floodplain.

## Contamination/Hazardous Materials/Wastes

Potentially contaminated site data was obtained from the MPCA's What's in My Neighborhood dataset. There are 13 potentially contaminated sites in the project area.

## Table 3 - Contamination/Hazardous Materials/Wastes

| Type of Contaminated Site | Number of Sites along Corridor |
| :--- | :---: |
| Hazardous Waste | 7 |
| Construction Stormwater | 3 |
| Beard Petroleum Remediation, Leak Site | 1 |
| Brownfields, Voluntary Investigation and Cleanup | 1 |
| Underground Tanks | 1 |

## Wetlands, Fish, Wildlife, Plant Communities, and Sensitive Ecological Resources

The U.S. Fish and Wildlife Service does not report any NWI Wetlands, impaired lakes or streams, rare natural features, or MnDNR native plant communities within the $17^{\text {th }}$ Street N study area.

## Transportation

This section describes elements of the existing transportation network, information related to land use, traffic operations, safety, access, and non-motorized connections. This section concludes with a review of known social, economic, and environmental (SEE) resources considerations within the study area.

## Functional Classification

The functional classification system is used to create a roadway network that efficiently collects and distributes traffic from neighborhoods to the state highway system. A successful system coordinates and manages mobility, roadway design, and route alignment as well as seeks to match current and future access and land use with the adjacent roadway's purpose, speeds, and spacing. The functional classification system is comprised of principal arterials, minor arterials, major and minor collectors, and local roadways.

Within the study extents, north of US Highway 10 , the $17^{\text {th }}$ Street N corridor serves as a Collector roadway between $1^{\text {st }}$ Avenue North and $15^{\text {th }}$ Avenue North. The existing ADT (vehicles per day) ranges from 1,100 at the north end to 3,500 at the southern end of the corridor, according to MnDOT's 2015 and 2017 traffic counts. South of US Highway 10, and outside the study extents, $17^{\text {th }}$ Street South serves as a Minor Arterial roadway between Main Avenue and $12^{\text {th }}$ Avenue. The $17^{\text {th }}$ Street N corridor is an important north-south connection facilitating travel between local residential streets to minor arterial commercial corridors and ultimately to US Highway 10, a vital east-west Principal Arterial. Figure 3 (Appendix A) shows the functional class network in the study area.

Since $17^{\text {th }}$ Street N is a collector roadway through a developed residential and commercial business area it has several private driveway and local street access points. The east-west local streets that intersect the $17^{\text {th }}$ Street N study area includes $13^{\text {th }}$ Avenue, $11^{\text {th }}$ Avenue, $10^{\text {th }}$

November 9, 2020
Avenue, $8^{\text {th }}$ Avenue, $7^{\text {th }}$ Avenue, $6^{\text {th }}$ Avenue, $5^{\text {th }}$ Avenue, $3^{\text {rd }}$ Avenue, $2^{\text {nd }}$ Avenue. $4^{\text {th }}$ Avenue is an east-west Collector roadway that intersects the $17^{\text {th }}$ Street N in the study area. $15^{\text {th }}$ Avenue at the north extent and $1^{\text {st }}$ Avenue at the south extent of the study area are both Minor Arterial roadways.

Figure 3 in the existing conditions report shows the roadway jurisdiction in the study area.

## Utilities

## Sanitary

According to the City of Moorhead GIS, sanitary sewer systems in the corridor area were all constructed between 1944-1958. The material of the main lines in this area is vitrified clay pipe. In the southern portion of the corridor from $1^{\text {st }}$ Ave N to $4^{\text {th }}$ Ave N sanitary sewer main lines cross the corridor perpendicularly at the intersections. Moving north from $4^{\text {th }}$ Ave N to $15^{\text {th }}$ Ave N sanitary sewer mains are located near the centerline of the roadway. There is a sanitary high point mid-block between $11^{\text {th }}$ Ave N and $13^{\text {th }}$ Ave N . At this location main lines travel north or south respectively.

## Storm

According to the City of Moorhead GIS, storm sewer systems in the project area are all reinforced concrete pipe. Storm main lines primarily run on the east side of $17^{\text {th }}$ Street N except for block gaps between $1^{\text {st }}$ Ave $N$ and $2^{\text {nd }}$ Ave $N$ and $6^{\text {th }}$ Ave $N$ and $7^{\text {th }}$ Ave $N$ where intersection catch basins are served by east-west storm mains. Storm mains from $2^{\text {nd }}$ Ave $N$ to $6^{\text {th }}$ Ave $N$ primarily carry water to an east-flowing storm main at $4^{\text {th }}$ Ave $N$. Storm mains from $7^{\text {th }}$ Ave N to $15^{\text {th }}$ Ave N primarily carry water to an east-flowing storm main at $10^{\text {th }}$ Ave N .

## Drainage

Due to relatively flat topography present in the area, storm runoff along the roadway profile in street gutters is inconsistent. Areas of ponding occur during spring melt and storm events. Anecdotal evidence of ponding on adjacent properties has also been received, but not observed.

## Water

Water distribution systems in the area, according to Moorhead Public Service GIS, run along the west side of the roadway throughout the entirety of the corridor. Watermains are primarily constructed from cast iron from 1st Ave N to 8th Ave N and the primary material from 8th Ave $N$ to 15th Ave $N$ is Polyvinyl Chloride (PVC) pipe. Ages of the pipe vary throughout the corridor with installation dates ranging from 1960-2019. Segments of watermain that cross the intersection at 4th Ave N were installed in 1941.

November 9, 2020

## Electrical

According to data provided by Moorhead Public Service, electrical distribution systems throughout the study area vary. The southern portion of the corridor from $1^{\text {st }}$ Ave N to $4^{\text {th }}$ Ave N is primarily served by underground primary and secondary electrical distribution lines. Further north underground crossings of primary electrical lines are present between $10^{\text {th }}$ Ave N and $13^{\text {th }}$ Ave N with a crossing at the intersection of $13^{\text {th }}$ Ave N and $17^{\text {th }}$ Street N . Overhead secondary lines run along the west side of the corridor between $6^{\text {th }}$ Ave $N$ and $13^{\text {th }}$ Ave $N$ with overhead crossings at $2^{\text {nd }}$ Ave $N, 4^{\text {th }}$ Ave $N, 6^{\text {th }}$ Ave $N$, and $10^{\text {th }}$ Ave $N$. Primary lines for the residential area between $4^{\text {th }}$ Ave $N$ and $15^{\text {th }}$ Ave $N$ are generally located in the alley a half-block from the $17^{\text {th }}$ Street Corridor in either direction. Street lights are present along the entirety of the corridor primarily on the west side of the roadway.

## Visual

17th Street $N$ appears to be a low-density commercial corridor from 1st Avenue $N$ to 4th Avenue N. Views from the street include store fronts and commercial parking lots. From 4th Avenue to 15th Avenue, the corridor appears to be a single-family residential street. Views include single-family homes, mature trees and foliage, and driveways. The only exception to this is Moorhead Manor, a retirement home, on the Northeast corner of 17th Street N and 13th Avenue N.

## Air, Noise, and Cumulative Potential Effects

Air, noise, and cumulative potential effects will be considered in a future NEPA analysis once a project is funded.

## IV. References

Executive Order 12898. (1994).
FHWA Office of Human Environment (2012). Webinar Series on Environmental Justice: Guidance for Conducting Community Impact Assessments.
U.S. Census Bureau. (2017). American Community Survey 5-year Estimate. www.data.census.gov/cedsci/.
U.S. Department of Transportation (DOT) Order 5610.2(a). (2012). Actions to Address Environmental Justice in Minority Populations and Low-Income Populations.
U.S. Environmental Protection Agency (EPA). (2019). EJSCREEN. www.epa.gov/ejscreen.




Existing Land Use
2009 Comprehensive Plan Addendum City of Moorhead, Minnesota

Figure 3



## Appendix C: Purpose and Need

##  <br> 17H STREE

# $\mathbf{1 7}^{\text {th }}$ Street $\mathbf{N}$ Corridor Study 

FINAL Purpose + Need Statement

| Date: | November 9, 2020 |
| :--- | :--- |
| To: | Luke Champa, Assistant Planner, FM Metro COG |
|  | Dan Farnsworth, Transportation Planner, FM Metro COG |
| From: | Cody Christianson, PE, Project Manager, Bolton \& Menk, Inc. |
|  | Jim Mertz, GISP, Project Planner, Bolton \& Menk, Inc. |
|  | Connor Cox, Project Planner, Toole Design |
| Subject: | Purpose and Need Statement <br>  <br>  <br>  <br>  <br>  <br>  <br> Fargo-Moorhead Metropolitan Council of Governments (Metro COG) |

## Table of Contents

I. Introduction ..... 3
Study Area Background ..... 3
Purpose ..... 4
II. $\quad 17^{\text {th }}$ Street N Corridor Study Area Needs ..... 4
Modal Interrelationships ..... 5
Vehicle Mobility ..... 7
Vehicle Safety ..... 9
Infrastructure Conditions ..... 10
Additional Considerations: Social, Economic, and Environmental (SEE) Factors ..... 11

## Tables

Table 1 - Existing Traffic Operations Analysis Results
Table 2 - 2040 No Build Traffic Operations Analysis Results
Table 3 - Intersections with Safety Concerns
Figures
Figure 1 - Study Area

## I. Introduction

This corridor study purpose and need statement defines the transportation concerns or deficiencies along $17^{\text {th }}$ Street N from $1^{\text {st }}$ Avenue N to $15^{\text {th }}$ Avenue N . The formation of the purpose and need statement is based upon existing conditions data and stakeholder input received early in the study process. The identification of needs helps build a common focus among stakeholders on the scope and timing of improvements through defining the "who, what, where, why, and when" of the transportation needs. This also provides project partners and stakeholders with direction on the need for additional analysis required in the next phase of the project development process.

The identified needs and opportunities within the study area will also serve as the cornerstone for finalizing evaluation criteria, which will be used to create and evaluate a full range of alternatives and design options that satisfy the specific project area needs.

Since any major future improvements along the $17^{\text {th }}$ Street N will likely seek federal funding, pertinent Federal Highway Administration (FHWA) transportation purpose and need guidance was used, in part, to help outline transportation needs (and other considerations) in the study area. It is anticipated that standalone purpose and need statements will be required for each future action and that the study needs documented will be utilized to the extent practicable.

## Study Area Background

The 17th Street N project corridor extends from the downtown Moorhead business area at 1st Avenue N to the recently improved intersection at 15th Avenue N within the primarily residential area. The corridor has 140 feet of platted right-of-way and approximately 60 feet of curb-to-curb pavement. For ease in describing key study area needs in more depth, the corridor is split into a north segment and a south segment based on their different settings and needs.

Figure 1: Study Area


Segment 1-1st Avenue $N$ to $4^{\text {th }}$ Avenue $N$, the commercial and institutional segment, is generally characterized by a low speed ( 30 mph ), three-lane urban section with a center left turn lane and onstreet parking on both sides of the roadway. Pedestrian facilities are incomplete and limited. The Park Christian School zone along the corridor generates high peak hour volumes of bus, student driver, and parent drop off and pick up traffic. D-S Beverages generates heavy commercial truck traffic between their location just north of $2^{\text {nd }}$ Avenue and US Highway 10. Traffic generation is further increased by direct access to $1^{\text {st }}$ Avenue N and close proximity access to US Highway 10.

Segment $2-4^{\text {th }}$ Avenue $N$ to $15^{\text {th }}$ Avenue $N$, the residential segment with primarily single-family homes, is a 30 mph , two-lane urban section with on-street parking on both sides of the roadway. The pedestrian network includes a continuous and connected sidewalk throughout, however several ADA ramps are missing or inadequate. The far north part of this segment, from approximately $10^{\text {th }}$ Avenue N to $15^{\text {th }}$ Avenue N, falls within a 500-year floodplain. Drainage is an issue in this area as sections of curb and gutter have settled, there are limited number of inlets along the corridor, and the boulevard slopes are very flat. The segment is a major local traffic trip generator as it serves connections to several singlefamily, multiple vehicle households. North of $15^{\text {th }}$ Avenue N , the zoned Industrial area would be most conveniently served by US Highway 75 and $15^{\text {th }}$ Avenue $N$ (County Road 83 ) and should result in little to no heavy truck traffic on $17^{\text {th }}$ Street N .

As a major collector roadway, the 17 th Street N corridor is important for area residents and the businesses it serves. An important commuter route, it provides a direct north-south connection and has an annual average daily traffic (AADT) of 1100 vehicles in the northern portion and 3550 in the southern section. The Metro COG 2020-2023 Transportation Improvement Program and the City of Moorhead 2020 to 2024 Pavement Management and Capital Improvement Projects Plan identify this roadway as a locally funded rehabilitation project being constructed in 2022.

## Purpose

The purpose of the $17^{\text {th }}$ Street $N$ Corridor Study is to identify context-sensitive transportation improvements along $17^{\text {th }}$ Street N that will safely accommodate all users, provide efficient mobility and access for all modes of travel, preserve community connections, and encourage economic vitality. Future corridor improvements should also include financially responsible infrastructure that is compatible with the natural and built environment.

## II. $\quad 17^{\text {th }}$ Street N Corridor Study Area Needs

This section lists the study area needs that will be refined based on existing conditions data and future conditions analysis. The determination of primary needs, secondary needs, and additional considerations will be completed after review of the data/analysis and in consultation with the Study Review Committee (SRC).

Primary needs include the transportation shortfalls that have been substantiated and recognized by the project partners as priority issues to be resolved. Primary needs lead to the initiation of specific improvements/project(s) that resolve current or future concerns. Secondary needs include other transportation shortfalls and opportunities in the study area that may be able to be addressed, if feasible, at the same time that the primary needs are addressed. Additional considerations are other important factors that may have an influential effect on project decisions or project elements. Below is
an assessment of $17^{\text {th }}$ Street N corridor needs and/or additional considerations. The determination of whether a need is considered primary and/or secondary will be determined on a project by project basis and at the scoping and preliminary design phase of project development.

## Modal Interrelationships

## Walkability/Bikeability

Within and connecting to the study area, there are many destinations for pedestrians and bicyclists to travel to/from. The study area is served by an incomplete and mostly non-ADA compliant pedestrian sidewalk system and two east-west local bicycle facility connections that intersect $17^{\text {th }}$ Street N at $15^{\text {th }}$ and $2^{\text {nd }}$ Avenue N . These bicycle facility connections provide both pedestrian and bicycle connections to and from $17^{\text {th }}$ Street N . Complete descriptions of existing facilities and maps illustrating the existing and planned network of sidewalks and trails can be found in the $17^{\text {th }}$ Street $N$ Corridor Study Existing Conditions Report.

Listed below is a summary of pedestrian and bicycle facility needs within the study area. These system needs are further discussed and mapped in the $17^{\text {th }}$ Street $N$ Corridor Study Existing Conditions Report.

- ADA Compliant Feature - several sidewalk connections and curb ramps in the project area are in poor condition or absent at intersections along $17^{\text {th }}$ St. These are listed below:
- Northwest corner of $17^{\text {th }}$ St and $4^{\text {th }}$ Ave, crossing $17^{\text {th }}$ St
- Northwest and Southwest corners of $17^{\text {th }}$ St and $5^{\text {th }}$ Ave, crossing $17^{\text {th }}$ St and $5^{\text {th }}$ Ave
- Northeast corner of $17^{\text {th }}$ Street N and $7^{\text {th }}$ Ave, crossing $17^{\text {th }}$ Street N
- Northwest corner of $17^{\text {th }}$ Street N and $8^{\text {th }}$ Ave, crossing $17^{\text {th }}$ Street
- Southeast corner of $17^{\text {th }}$ Street and $11^{\text {th }}$ Ave, crossing $17^{\text {th }}$ Street
- System Gaps/Barriers - Connectivity for pedestrian and bicycle movements is a need within the study area as the existing wide corridor promotes higher traffic speeds and can create barriers for non-motorized travelers to travel along and cross. Currently the only marked and signed crosswalks exist at $5^{\text {th }}$ Avenue and $10^{\text {th }}$ Avenue.

Several gaps and missing connections have been identified in the study area:

- Pedestrian facilities do not exist along the corridor from $1^{\text {st }}$ Ave N to $4^{\text {th }}$ Ave N except for recent improvements near Park Christian School.
- A planned bicycle facility along the $17^{\text {th }}$ Street N study area will fill a north-south gap for bicycle commuters and recreational bicyclists between $2^{\text {nd }}$ Avenue N and $15^{\text {th }}$ Avenue N .
- A planned bicycle facility along $7^{\text {th }}$ Avenue, between $13^{\text {th }}$ Street N and US Highway 75, would cross $17^{\text {th }}$ Street N .
- Side street north-south marked crosswalks are limited in the study area. While a marked crosswalk may not be warranted at every local street intersection it will be important to
bring awareness to pedestrian activity surrounding the school, commercial area, and transit stop locations.
- The City of Moorhead Comprehensive Plan recommends a pedestrian crossing on the east side of the intersection of $1^{\text {st }}$ Ave N and $17^{\text {th }}$ Street $N$.


## Pedestrian and Bicycle Crashes

A crash analysis showed there were no reported fatal crashes or pedestrian crashes in the last ten years (2010-2019). While the frequency and severity of crashes involving these vulnerable modes of travel does not demonstrate a substantial safety concern there was a possible injury bicycle crash at the intersection of $1^{\text {st }} A v e N$ and $17^{\text {th }}$ Street $N$ in 2011. The bicyclist was crossing $17^{\text {th }}$ Street $N$ and was hit by a driver along southbound $17^{\text {th }}$ Street N attempting to turn right onto $1^{\text {st }}$ Ave N .

## Transit Service

MATBUS, Fargo-Moorhead Metropolitan Area's public transportation service, offers Route 4, which runs along $17^{\text {th }}$ Street from $7^{\text {th }}$ Ave N to $13^{\text {th }}$ Ave $N$. Route 4 connects the corridor to both downtown Moorhead and downtown Fargo. Current stops along $17^{\text {th }}$ Street are unimproved and do not contain any amenities such as shelters, benches, lighting, or bus bulbs. The lack of ADA accommodations near bus stop locations limits the accessibility to the transit service.

Roadway lighting is limited, and pedestrian lighting does not exist on the corridor. Lack of corridor lighting to enhance pedestrian and bicyclist safety creates challenges for the success of improving Moorhead night route on-time and service by extending routes 1, 3, 4, and 5 end times to 11:00 PM and adding a second bus to Route 4 to provide 30 minute service on weekday and Saturday nights. This community need is recognized in the Fargo-Moorhead Metropolitan Area 2016-2020 Transit Development Plan.

## Heavy Commercial Vehicle Movements

A few heavy commercial vehicle generating businesses/developments have been identified in the south end of study corridor (Segment 1). According to 2019 traffic data, heavy commercial vehicles account for approximately 9 to 12 percent of all trips on $17^{\text {th }}$ Street $N$.

Safe and reliable access to existing and future freight generating developments as well as efficient connections to the highway road network is important to the long term viability of these industries to deliver and receive goods to/from regional markets outside the study area. While existing access conditions appear to adequately serve heavy commercial vehicle operations, there are local circulation issues, intersection geometry constraints, and connectivity opportunities within Segment 1 that need to be considered in evaluating future improvements in order to ensure safe and efficient freight movements to current and future commercial, industrial, and manufacturing land uses. Below is a brief description of the important freight access points and routes within each segment of the corridor study area:

## Segment 1: 1st Avenue $N$ to $4^{\text {th }}$ Avenue $N$, the commercial and institutional segment.

$1^{\text {st }}$ Avenue N provides sufficient access between $17^{\text {th }}$ Street N and US Highway 10 for heavy commercial movements. Existing geometrics (lane/shoulder widths, sight distance, lack of turn lanes, and turning radii) do not create any apparent challenges for freight movements.

D-S Beverages generates heavy commercial truck traffic between their location just north of $2^{\text {nd }}$ Avenue and US Highway 10. Stenerson Bros. Lumber Co truck traffic generation is primarily between $2^{\text {nd }}$ Avenue $N$ and $1^{\text {st }}$ Avenue North. Stenerson customer traffic uses access locations near the intersection of $1^{\text {st }}$ Avenue North and $17^{\text {th }}$ Street North. The Park Christian School zone generates high peak hour volumes of bus traffic mixed with student driver and parent drop off and pick up traffic.

## Segment 2: $4^{\text {th }}$ Avenue $N$ to $15^{\text {th }}$ Avenue N , the residential segment.

North of $15^{\text {th }}$ Avenue N , the zoned Industrial area would be most conveniently served by US Highway 75 and $15^{\text {th }}$ Avenue N (County Road 83 ) and should result in little to no heavy truck traffic on $17^{\text {th }}$ Street N .

## Vehicle Mobility

The $17^{\text {th }}$ Street N corridor is an important north-south connection facilitating travel between local residential streets to 1st Avenue N (a Minor Arterial roadway) and 15th Avenue N (a Major Collector roadway). Nine Local Streets, two Minor Arterials, and one Collector Street intersects the $17^{\text {th }}$ Street N study corridor. The $1^{\text {st }}$ Avenue N corridor and Downtown Moorhead has experienced infill and redevelopment growth is transforming into more of a destination for Moorhead residents.

## Corridor Operations

Within the study extents, north of US Highway 10, the $17^{\text {th }}$ Street N corridor serves as a Collector roadway between $1^{\text {st }}$ Avenue North and $15^{\text {th }}$ Avenue North. The existing annual average daily traffic (AADT) ranges from 1,100 vehicles at the north end to 3,500 at the southern end of the corridor, according to MnDOT's 2015 and 2017 traffic counts. South of US Highway 10, and outside the study extents, $17^{\text {th }}$ Street South serves as a Minor Arterial roadway between Main Avenue and $12^{\text {th }}$ Avenue $S$. The $17^{\text {th }}$ Street N corridor is an important north-south connection facilitating travel between local residential streets to minor arterial commercial corridors and ultimately to US Highway 10, a vital eastwest Principal Arterial.

Since $17^{\text {th }}$ Street N is a collector roadway through a developed residential and commercial business area it has several private driveway and local street access points. The east-west local streets that intersect the $17^{\text {th }}$ Street N study area includes $13^{\text {th }}$ Avenue, $11^{\text {th }}$ Avenue, $10^{\text {th }}$ Avenue, $8^{\text {th }}$ Avenue, $7^{\text {th }}$ Avenue, $6^{\text {th }}$ Avenue, $5^{\text {th }}$ Avenue, $3^{\text {rd }}$ Avenue, and $2{ }^{\text {nd }}$ Avenue. $4^{\text {th }}$ Avenue is an east-west Collector roadway that intersects $17^{\text {th }}$ Street N in the study area. $15^{\text {th }}$ Avenue at the north extent and $1^{\text {st }}$ Avenue at the south extent of the study area are both Minor Arterial roadways.

## Existing Traffic Operations

Turning movement counts were completed at the intersections of 17th St N at 15 th Ave, 8 th Ave and 1 st Ave on Tuesday, September 15, 2020. Park Christian School was in session when the count was taken.

Real Reople. Real Solutions.

Additionally, tube counts were collected Tuesday, September 22nd through Thursday the 24th along 17th St N. The traffic data collected in September 2020 was compared to previous count data available to determine if edits were needed or if the data was reflective of normal traffic. All recommended changes to the count data were approved by the project team. The methodology is presented in this study's Traffic Count Analysis Memorandum. Once the counts were updated to accurately reflect normal traffic patterns an operational analysis was completed. An analysis of existing AM and PM peak hour intersection operations was completed in Synchro/SimTraffic. All intersections in the study area are stop controlled. $15^{\text {th }}$ Avenue at the north extent and $1^{\text {st }}$ Avenue at the south extent of the study area have stop controls that stop traffic on $17^{\text {th }}$ Street N and give right of way to the east-west Minor Arterial roadways. $8^{\text {th }}$ Avenue at $17^{\text {th }}$ Street N is all way stop controlled. All other intersections are side street stop controlled giving right of way to $17^{\text {th }}$ Street N traffic.

The average intersection delay is a volume-weighted average of delay experienced by all motorists entering the intersection on all intersection approaches. Intersections and each intersection approach are given a ranking from Level of Service (LOS) A through LOS F. LOS A indicates the best traffic operation, with vehicles experiencing minimal delays. LOS A through $D$ are generally perceived to be acceptable to drivers. LOS E indicates that an intersection is operating at, or very near, its capacity and that travelers experience considerable delays. LOS F indicates an intersection where demand exceeds capacity resulting in substantial delays. Table 1 shows the intersection delay as well as the maximum delay of all movements at each intersection.

Table 1 - Existing Traffic Operations Analysis Results

| Intersection | Peak <br> Hour | Intersection (Delay* - LOS) | Maximum Movement |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Mvmt | Delay* - LOS |
| 1st Ave \& 17th St <br> Two-Way Stop Controlled | AM | 3-A | SBL | 26 - D |
|  | PM | 2-A | SBL | 22 - C |
| 17th St \& 8th Ave <br> All-Way Stop Controlled | AM | 6-A | WBT | 8-A |
|  | PM | 6-A | NBT | 7-A |
| 17th St \& 15th Ave <br> Two-Way Stop Controlled | AM | 2-A | NBL | 9-A |
|  | PM | 2-A | NBL | 11-B |

*Delay is in seconds per vehicle
Based on the existing conditions operational analysis, all intersections operate with LOS A overall. The southbound left at $1^{\text {st }}$ Avenue and $17^{\text {th }}$ Street N operates with LOS D during the AM peak hour and LOS C during the PM peak hour. All other movements operate with LOS A or B.

A 2008 documented review of $1^{\text {st }}$ Avenue from the Red River to $21^{\text {st }}$ Street recommends a traffic signal at the intersection of $1^{\text {st }}$ Avenue and $17^{\text {th }}$ Street $N$ to alleviate significant side street delays. The existing traffic analysis indicates that the southbound left delay is currently acceptable, but approaching capacity. A signal warrant analysis was completed which indicates that with the existing volumes a signal is not justified at the intersection of $1^{\text {st }}$ Avenue and $17^{\text {th }}$ Street N .

## 2045 No-Build Traffic Operations

Using the traffic forecasting methodology detailed in this study's Traffic Forecasting Memorandum, an analysis of forecasted 2045 AM and PM peak hour intersection operations was also completed in Synchro/SimTraffic. The results are show in Table 2.

Table 2-2045 No Build Traffic Operations Analysis Results

| Intersection | Peak <br> Hour | Intersection (Delay* - LOS) | Maximum Movement |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Mvmt | Delay* - LOS |
| 1st Ave \& 17th St Two-Way Stop Controlled | AM | 6-A | SBL | 113 - F |
|  | PM | 4-A | SBL | $56-\mathrm{F}$ |
| 17th St \& 8th Ave All-Way Stop Controlled | AM | 5-A | WBT/SBT | 6-A |
|  | PM | 5-A | NBL | 6-A |
| 17th St \& 15th Ave <br> Two-Way Stop Controlled | AM | 3-A | NBL | 12-B |
|  | PM | $2-\mathrm{A}$ | NBL | 14-B |

*Delay is in seconds per vehicle
The results of the 2045 No Build operational analysis indicate that the intersection delay overall remains acceptable with LOS A during both peak hours. The southbound left movement at $1^{\text {st }}$ Avenue and $17^{\text {th }}$ Street $N$ is anticipated to operate with LOS F during both peak hours with the average delay nearly two minutes per vehicle during the AM peak hour and nearly one minute per vehicle during the PM peak hour. All other movements operate with LOS C or better. A signal warrant analysis was completed which indicates that with the 2045 volumes a signal is not justified at the intersection of $1^{\text {st }}$ Avenue and $17^{\text {th }}$ Street N.

## Vehicle Safety

The intersection of $1^{\text {st }}$ Ave N and $17^{\text {th }}$ Street N operates outside the normal range compared to similar intersections statewide for both total number of crashes and for fatal and serious crashes with one serious injury crash. There were 13 crashes in the project area over the last five years (2015-2019). Right angle crashes were the most common accounting for 9 of the 13 crashes. No fatal or pedestrian and bicycle crashes were reported (2015-2019) however there was one possible injury bicycle crash reported in the last ten years (2010-2019).

## Crash Analysis

A crash analysis was completed for the study area to understand the existing safety concerns. The key results of the crash analysis for the timeframe between 2015-2019 include:

- 13 intersection crashes
- 9 of the 13 crashes were right angle crashes
- There were no reported fatal crashes
- There was one reported non-fatal severe crash
- There were no reported pedestrian or bicycle crashes
- The intersection of $1^{\text {st }}$ Ave N and $17^{\text {th }}$ Street N operates outside the normal range compared to similar intersections statewide for both total number of crashes and for fatal and serious crashes with one serious injury crash.
- All other intersections operate within the normal range compared to similar intersections statewide.
- The overall corridor operates within the normal range compared to other two lane roadways with similar ADT.

A ten-year (2010-2019) crash analysis was completed for fatal crashes in addition to crashes involving a pedestrian and/or bicycle. There was a possible injury bicycle crash at the intersection of $1^{\text {st }}$ Ave N and $17^{\text {th }}$ Street N in 2011. The bicyclist was crossing $17^{\text {th }}$ Street N and was hit by a vehicle along southbound $17^{\text {th }}$ Street N attempting to turn right onto $1^{\text {st }}$ Ave N . There were no reported fatal crashes or pedestrian crashes in the last ten years.

## Contributing Conditions

The physical characteristics of corridors and intersections can contribute to safety issues. Below is a list of geometric conditions that may have contributed to past safety concerns.

A key component can be the inadequate spacing of access points. Since $17^{\text {th }}$ Street $N$ is a collector roadway through a developed residential and commercial business area it has several private driveway and local street access points. The access spacing analysis indicated that all full access intersections meet the recommended spacing except between $10^{\text {th }}$ Ave $N$ and $11^{\text {th }}$ Ave $N$. The spacing of driveways along the corridor, however, does not meet the recommended spacing lengths except between $13^{\text {th }}$ Ave N and $15^{\text {th }}$ Ave N .

## Infrastructure Conditions

## Pavement/Maintenance Reduction

The existing pavement typical section on the 17th Street $N$ corridor is approximately 60 feet curb-tocurb from 1st Ave N to 15 th Ave N . The entire platted right-of-way is approximately 140 feet. This excessive width is nearly double the widths of similar adjacent roadways and provides unique challenges compared to similar two and three-lane roadways in the city. Existing bituminous surface maintenance requires more materials, time, and cost. Likewise, winter roadway maintenance requires additional sand/salt material and snowplow trips compared to similar roadways. The Metro COG 2020-2023 Transportation Improvement Program and the City of Moorhead 2020 to 2024 Pavement Management and Capital Improvement Projects Plan identify projects in the community. Future projects in the study area, as depicted in the Capital Improvement Plans, include:

- $17^{\text {th }}$ Street N Rehabilitation from $1^{\text {st }}$ Avenue N to $15^{\text {th }}$ Avenue N , Planned 2022. This capital maintenance project initiated the study to explore long-term options that result in a fiscally responsible maintenance program moving forward while improving safety, mobility, and aesthetics.
- $15^{\text {th }}$ Avenue N Rehabilitation, Completed 2019
- $4^{\text {th }}$ Avenue N Rehabilitation from $14^{\text {th }}$ Street N to $17^{\text {th }}$ Street N, Planned 2022


## Drainage Concerns

The far north part of Segment $2\left(4^{\text {th }}\right.$ Avenue $N$ to $15^{\text {th }}$ Avenue $N$, the residential segment), from approximately $10^{\text {th }}$ Avenue N to $15^{\text {th }}$ Avenue N , falls within a 500 -year floodplain with relatively flat topography. Drainage is an issue in this area as sections of curb and gutter have settled, there are a limited number and inconsistent inlets along the corridor, and the boulevard slopes are very flat. Areas of ponding occur during spring melt and storm events. Anecdotal evidence of ponding on adjacent properties has also been received, but not observed. The alternatives development and evaluation processes for future projects will need to conduct an in-depth review and consideration of these features, along with assessing potential impacts to existing drainage systems, future flood risks, sensitive waters, impacts to vegetation, soil and groundwater contamination, and regulatory requirements.

## Additional Considerations: Social, Economic, and Environmental (SEE) Factors

This section is intended to provide a high level description of the existing conditions and potential SEE factors within the $17^{\text {th }}$ Street N study area that will need to be considered as alternatives are developed and evaluated as part of the project development process. This section is not an in-depth analysis and the topics to be considered during future phases of project development will depend on the scope of planned projects and the type of funding being used, as a project may be required to undertake state and/or federal environmental review.

A more detailed inventory and assessment of the SEE factors associated with the study area can be found in the $17^{\text {th }}$ Street $N$ Corridor Study Environmental Screening within the $17^{\text {th }}$ Street $N$ Corridor Existing and No Build Conditions Report.

An important social factor needing to be considered early in alternatives development is the presence of Environmental Justice (EJ) populations as all federal actions are required to comply with Executive Order 128981. EJ populations are minority and/or low-income populations that are meaningfully greater than those of the general population. For EJ, "meaningfully greater" is defined as a minority or low-income population that is either 10 percent higher than the county average, or greater than 50 percent of the total geographic unit, or determined based on input from local officials or stakeholders.

## Social

Based on a review of U.S. Census data - 2018 American Community Survey 5 -year Estimates, there are several block groups within or near the study area that include minority and low-income environmental justice populations. Further determination will be needed on a project basis to determine if these populations have the potential to experience disproportional impacts due to construction activity. Generally, permanent impacts of transportation projects are intended to improve the transportation corridor for all users. While future improvements to the $17^{\text {th }}$ Street N corridor would unlikely disproportionately impact any of the identified environmental justice populations, a robust public/stakeholder engagement effort is strongly recommended in future stages of the project development process and prior to the evaluation of alternatives.

## Economic

$17^{\text {th }}$ Street N is an important route for residential neighborhoods and commercial freight to connect to commercial, industrial, and institutional areas in the south end of the study corridor and along $1^{\text {st }}$ Avenue N into Downtown Moorhead. Safe and efficient access to commerce destinations (retail shops, restaurants, entertainment, office, and manufacturing/industry) are key factors in the long-term vitality of the local and regional economies.

Traffic counts collected through MetroCOG and StreetLight ${ }^{\circledR}$ data from 2019 indicate that heavy commercial truck volumes account for approximately 9 to 12 percent of all daily traffic exiting US Highway 10 for commercial and industrial areas along $1^{\text {st }}$ Avenue N , including those at the south end of the $17^{\text {th }}$ Street $N$ study corridor. Operational and safety benefits for freight operators, including last mile connections to and from the highway system, can translate into real dollar savings for businesses that ship items via commercial trucking. By reducing freight shipping costs, a real efficiency benefit can accrue to the business shipping the product, and a potential cost savings can be realized by the receiving business. Shipping cost savings can lower the overall product cost for consumers, in turn making local businesses more competitive compared with their outside competition, and better able to expand to new markets.

In addition to the business expansion benefit related to shipping cost savings, system multimodal connectivity improvements can extend the market area that businesses can serve, as well as the areas from which they can access customers and/or suppliers. By extending the distance range over which local businesses effectively compete with their regional or state competitors can provide opportunities for substantial market expansion and attraction of commercial and industrial industries.

Investments in transportation-related improvements for all modes result in several types of economic impacts. The magnitude of the economic impact for the study area and the adjacent economic destinations is most influenced by increased safety and mobility for all modes of travel. Providing safe, and accessible travel along and across the $17^{\text {th }}$ Street N corridor will promote economic competitiveness, expand employment opportunities, and increase community health and livability for the local and regional economies.

## Environmental

The study area does not include NWI Wetlands, impaired lakes or streams, rare natural features, or MnDNR native plant communities, and there are no water resources along the $17^{\text {th }}$ Street N corridor. The far north part of this segment, from approximately $10^{\text {th }}$ Avenue N to $15^{\text {th }}$ Avenue N , falls within a 500 -year floodplain. As previously mentioned, drainage is an issue in this area as sections of curb and gutter have settled, there are a limited number of inlets along the corridor, and the boulevard slopes are very flat. The alternatives development and evaluation processes for future projects will need to conduct an in-depth review and consideration of these features, along with assessing potential impacts to existing drainage systems, future flood risks, sensitive waters, impacts to vegetation, soil and groundwater contamination, and regulatory requirements not only within but impacted by the study area.

## Stakeholder Support

In 2020, the $17^{\text {th }}$ Street N Corridor Study Review Committee (SRC) was formed, which consists of representatives from the City of Moorhead Engineering, Public Works, Transit, and Planning; Moorhead Public Service, Park Christian School, Metro COG, NDDOT, and FHWA. The SRC is tasked with guiding the study process and serving as a conduit to their governing bodies and constituents. A goal of the SRC is to develop a unified vision for transportation priorities/recommendations that are locally accepted in order to pursue funding and future municipal consent.

## Appendix D: Goals and Objectives

## $17^{\text {th }}$ Street N Corridor Study Goals \& Objectives

| Goal | Objective |
| :---: | :---: |
| Safely accommodate all users (motor vehicles, freight, transit, pedestrians, bicyclists) | Eliminate serious injury crashes |
|  | Reduce all crashes in both frequency and severity |
|  | Provide safe pedestrian and bicycle facilities along $17^{\text {th }}$ Street $N$ and at all crossings |
| Provide efficient mobility and access for all modes of travel | Provide acceptable system reliability serving existing and planned growth |
|  | Manage access consistent with roadway functional class and access spacing guidelines when applicable |
|  | Provide a connected transportation system that accommodates trips consistent with roadway functional class |
|  | Accommodate business delivery and freight needs |
|  | Accommodate future transit plans and needs |
|  | Provide convenient access for pedestrians and bicyclists to serve demand |
|  | Provide convenient access for vulnerable populations including youth and elderly |
| Develop a financially responsible infrastructure implementation plan | Develop projects and phasing that meet schedule and funding constraints |
|  | Minimize right-of-way costs |
|  | Minimize maintenance and lifecycle costs |
|  | Maximize benefit-cost of improvements |
|  | Maximize potential to secure competitive funding |
| Preserve community connections and economic vitality | Provide reasonable access and connectivity for businesses and neighborhoods |
|  | Maintain sustainable access for local trips into/out of Downtown Moorhead and to/from Highway 10 |
|  | Support existing and future land use plans |
|  | Serve the neighborhood livability for all populations including elderly and youth |
|  | Seek consistency with regional and local plans |
| Provide infrastructure improvements compatible with the natural and built environment | Avoid, minimize, and mitigate impacts to the built environment |
|  | Avoid, minimize, and mitigate impacts to sensitive environmental resources. |
|  | Avoid, minimize, and mitigate impacts for flood risks and stormwater issues. |

## Appendix E: Alternatives









## Appendix F: Opinions of Probable Cost

The following pages include planning-level opinions of probable costs for each of the alternatives shown in Section VII. The opinions of probable costs are based on MnDOT 2019 statewide average bid prices. To develop planning-level opinions of probable costs, it was necessary to make some assumptions about construction. The opinions of probable costs include typical construction materials and costs such as excavation, grading, base, pavement, pavement markings, and signing and markings. They also include the construction of new curb extensions as well as new ADA-compliant curb ramps at each intersection.

Each alternative includes a range for the opinions of probable costs. The high end of the range includes an allowance for design and engineering. Each opinion of probable cost also includes a $25 \%$ contingency that may account for unexpected costs or unknown project-specific cost items at this planning-level phase. These opinions of probable costs also include lump sum allowances for construction cost incidentals such as landscaping/ turf establishment, drainage/utilities, and erosion and sediment control. Individual project costs may vary; these opinions of probable costs are only intended to be used at a planning level and should be refined throughout project development.

## Disclaimer

Opinions of probable cost were developed by identifying major pay items and establishing rough quantities to determine a rough order of magnitude cost. Additional pay items have been assigned approximate lump sum prices based on a percentage of the anticipated construction cost. Planning-level cost opinions include a $25 \%$ contingency to cover items that are undefined or are typically unknown early in the planning phase of a project. Unit costs are based on 2019 dollars and were assigned based on historical cost data from MnDOT Average Bid Prices. Cost opinions do not include permitting, inspection, or construction management; surveying, geotechnical investigation, environmental documentation, special site remediation, escalation, or the cost for ongoing maintenance. A cost range has been assigned; however, these costs can vary widely depending on the exact details and nature of the work. The overall cost opinions are intended to be general and used only for planning purposes. Toole Design Group, LLC makes no guarantees or warranties regarding the cost estimate herein. Construction costs will vary based on the ultimate project scope, actual site conditions and constraints, schedule, and economic conditions at the time of construction.

## Alternative 1A - Path and Sidewalk

Assumes construction of a 10 ' shared-use path, 6 ' sidewalk, and curb extensions.
Assumes all modifications can occur within existing right-of-way
Assumes the only curb and gutter modifications occur at intersections for the added curb extensions.
Assumes removal and reconstruction of all driveway aprons on both sides of the road.
Unit prices per MnDOT 2019 average bid prices, all estimates are in 2019 dollars and may require escalation for future year construction.


## Alternative 1B - Path, Sidewalk and Buffered Bike Lanes

Assumes construction of buffered bike lanes, 10 ' shared-use path, 6 ' sidewalk, and curb extensions.
Assumes all modifications can occur within existing right-of-way.
Assumes the only curb and gutter modifications occur at intersections for the added curb extensions.
Assumes removal and reconstruction of all driveway aprons on both sides of the road.
Unit prices per MnDOT 2019 average bid prices, all estimates are in 2019 dollars and may require escalation for future year construction.

| Item | Unit | Quantity | Unit Cost | Total Cost | Assumptions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pavement Mill and Overlay | SF | 77078 | \$3.00 | \$231,234 |  |
| Saw Cut Bituminous Pavement (Full Depth) | LF | 877 | \$1.43 | \$1,254 |  |
| Remove Bituminous Pavement | SF | 6139 | \$0.82 | \$5,034 |  |
| Remove Curb and Gutter | LF | 877 | \$4.40 | \$3,859 |  |
| Remove Concrete Driveway Pavement | SF | 6728 | \$1.24 | \$8,343 |  |
| Install Curb and Gutter Design B624 | LF | 877 | \$23.53 | \$20,636 |  |
| Type SP 12.5 Non Wearing Course Mixture (3, B) | TON | 176 | \$77.80 | \$13,707 | $113 \mathrm{lbs} / \mathrm{sy}^{*} \mathrm{in}$, assume 4" thick for curb extensions |
| Type SP 12.5 Wearing Course Mixture (3, B) | TON | 88 | \$58.30 | \$5,136 | $113 \mathrm{lbs} / \mathrm{sy}^{*} \mathrm{in}$, assume 2" thick for curb extensions |
| Common Excavation | CY | 857 | \$15.00 | \$12,849 |  |
| Concrete Pavement 8" | SY | 498 | \$65.40 | \$32,561 | Commercial driveways |
| Aggregate Base (CV) Class 5 | CY | 306 | \$33.67 | \$10,301 |  |
| 4" Concrete Walk | SF | 7542 | \$6.26 | \$47,213 |  |
| Type SP 12.5 Wearing Course Mixture (3, B) | TON | 156 | \$58.30 | \$9,069 | $113 \mathrm{lbs} / \mathrm{sy*}$ in, assume 3" thick for shared use path |
| Geotextile Fabric Type V | SY | 1285 | \$1.87 | \$2,403 |  |
| ADA Ramps | EA | 19 | \$7,000.00 | \$133,000 |  |
| 4" Solid Line Epoxy (Bike Lane Markings) | LF | 2,370 | \$0.33 | \$782 | Lane Lines - 4 solid lines entire length, each side |
| 8" Solid Line Epoxy (Buffer Hatching) | LF | 89 | \$1.80 | \$160 | Buffer Lines - 1 solid line, 3 feet long, every 40 feet |
| Pavement Message Preform Thermoplastic Ground In (Bike Symbol) | SF | 142 | \$32.40 | \$4,607 | Bike Symbol - 1 Symbol every 250 feet, each side of road |


| Construction Cost Subtotal | $\mathbf{\$ 5 4 2 , 1 4 6}$ |
| :--- | ---: |
|  |  |
| Erosion and Sediment Control (2\%) | $\$ 10,843$ |
| Landscaping/Turf Establishment (10\%) | $\$ 54,215$ |
| Signing/Markings (10\%) | $\$ 54,215$ |
| Drainage/Utilities (20\%) | $\$ 108,429$ |
| Contingency (25\%) | $\$ 135,537$ |
|  |  |
| Design and Engineering Estimate (25\%) | $\$ 135,537$ |
|  |  |
| Low Rounded Total Cost (no design and engineering) | $\mathbf{\$ 9 1 0 , 0 0 0}$ |
| High Rounded Total Cost | $\mathbf{1 1 , 0 4 0 , 0 0 0}$ |

## Segment 1 - No Build

Assumes pavement mill and overlay, ADA curb ramps, and restriping existing pavement markings.
Assumes all modifications can occur within existing right-of-way.
Does not include any driveway apron removal or reconstruction work.

Unit prices per MnDOT 2019 average bid prices, all estimates are in 2019 dollars and may require escalation for future year construction.

| Item | Unit | Quantity | Unit Cost | Total Cost | Assumptions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pavement Mill and Overlay | SF | 77078 | \$3.00 | \$231,234 |  |
| ADA Ramps | EA | 15 | \$7,000.00 | \$105,000 |  |
| Construction Cost Subtotal |  |  |  | \$336,234 |  |
| Erosion and Sediment Control (2\%) |  |  |  | \$6,725 |  |
| Landscaping/Turf Establishment (10\%) |  |  |  | \$33,623 |  |
| Signing/Markings (10\%) |  |  |  | \$33,623 |  |
| Drainage/Utilities (20\%) |  |  |  | \$67,247 |  |
| Contingency (25\%) |  |  |  | \$84,059 |  |
| Design and Engineering Estimate (25\%) |  |  |  | \$84,059 |  |
| Low Rounded Total Cost (no design and engineering) |  |  |  | \$560,000 |  |
| High Rounded Total Cost |  |  |  | \$650,000 |  |

## Alternative 2A - Buffered Bike Lanes

Assumes construction of buffered bike lanes and curb extensions.
Assumes all modifications can occur within existing right-of-way.
Assumes the only curb and gutter modifications occur at intersection for curb extensions.

Unit prices per MnDOT 2019 average bid prices, all estimates are in 2019 dollars and may require escalation for future year construction.

| Item | Unit | Quantity | Unit Cost | Total Cost | Assumptions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pavement Mill and Overlay | SF | 257280 | \$3.00 | \$771,840 |  |
| Saw Cut Bituminous Pavement (Full Depth) | LF | 3670 | \$1.43 | \$5,248 |  |
| Remove Bituminous Pavement | SF | 25690 | \$0.82 | \$21,066 |  |
| Remove Curb and Gutter | LF | 3670 | \$4.40 | \$16,148 |  |
| Install Curb and Gutter Design B624 | LF | 3670 | \$23.53 | \$86,355 |  |
| Type SP 12.5 Non Wearing Course Mixture (3, B) | TON | 737 | \$77.80 | \$57,359 | $113 \mathrm{lbs} / \mathrm{sy*}$ in, assume 4" thick for curb extensions |
| Type SP 12.5 Wearing Course Mixture (3, B) | TON | 369 | \$58.30 | \$21,491 | $113 \mathrm{lbs} / \mathrm{sy}^{*} \mathrm{in}$, assume 2" thick for curb extensions |
| 4" Concrete Walk | SF | 8394 | \$6.26 | \$52,546 | Bus stop pads and sidewalk extensions at all intersections |
| ADA Ramps | EA | 57 | \$7,000.00 | \$399,000 |  |
| 4" Solid Line Epoxy (Bike Lane Markings) | LF | 8,128 | \$0.33 | \$2,682 | Lane Lines - 4 solid lines entire length, each side |
| 8" Solid Line Epoxy (Buffer Hatching) | LF | 305 | \$1.80 | \$549 | Buffer Lines - 1 solid line, 3 feet long, every 40 feet |
| Pavement Message Preform Thermoplastic Ground In (Bike Symbol) | SF | 488 | \$32.40 | \$15,801 | Bike Symbol - 1 Symbol every 250 feet, each side of road |


| Construction Cost Subtotal | $\mathbf{\$ 1 , 4 5 0 , 0 8 5}$ |
| :--- | ---: |
|  |  |
| Erosion and Sediment Control (2\%) | $\$ 29,002$ |
| Landscaping/Turf Establishment (10\%) | $\$ 145,009$ |
| Signing/Markings (10\%) | $\$ 145,009$ |
| Drainage/Utilities (20\%) | $\$ 290,017$ |
| Contingency (25\%) | $\$ 362,521$ |
|  | $\$ 362,521$ |
| Design and Engineering Estimate (25\%) |  |
|  | $\mathbf{\$ 2 , 4 2 0 , 0 0 0}$ |
| Low Rounded Total Cost (no design and engineering) | $\mathbf{\$ 2 , 7 8 0 , 0 0 0}$ |

## Alternative 2B - Center Median and Path

Assumes construction of a 10 ' shared use path, curb extensions, and center median.
Assumes all modifications can occur within existing right-of-way
Assumes curb and gutter modifications occur at intersections for curb extensions and at the center median.
Assumes removal and reconstruction for all driveways on east side.

Unit prices per MnDOT 2019 average bid prices, all estimates are in 2019 dollars and may require escalation for future year construction.


## Alternative 2C - Center Median and Shared Lanes

Assumes construction of curb extensions, center median, and shared lane markings.
Assumes all modifications can occur within existing right-of-way
Assumes curb and gutter modifications occur at intersections for curb extensions and at the center median.

Unit prices per MnDOT 2019 average bid prices, all estimates are in 2019 dollars and may require escalation for future year construction.

| Item | Unit | Quantity | Unit Cost | Total Cost | Assumptions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pavement Mill and Overlay | SF | 257280 | \$3.00 | \$771,840 |  |
| Saw Cut Bituminous Pavement (Full Depth) | LF | 9625 | \$1.43 | \$13,764 |  |
| Remove Bituminous Pavement | SF | 25690 | \$0.82 | \$21,066 | Curb extension |
| Remove Bituminous Pavement | SF | 119100 | \$0.82 | \$97,662 | Center median |
| Remove Curb and Gutter | LF | 9625 | \$4.40 | \$42,350 |  |
| Install Curb and Gutter Design B624 | LF | 9625 | \$23.53 | \$226,476 |  |
| Type SP 12.5 Non Wearing Course Mixture (3, B) | TON | 737 | \$77.80 | \$57,359 | $113 \mathrm{lbs} / \mathrm{sy*}$ in, assume 4" thick for curb extensions |
| Type SP 12.5 Wearing Course Mixture (3, B) | TON | 369 | \$58.30 | \$21,491 | $113 \mathrm{lbs} / \mathrm{sy}^{*} \mathrm{in}$, assume 2" thick for curb extensions |
| 4" Concrete Walk | SF | 8394 | \$6.26 | \$52,546 | Bus stop pads and sidewalk extensions at all intersections |
| ADA Ramps | EA | 57 | \$7,000.00 | \$399,000 |  |
| Pavement Message Preform Thermoplastic Ground In (Bike Symbol) | SF | 455 | \$32.40 | \$14,747 | Shared Lane Symbol - 1 Symbol every 250 feet, each side of road |


| Construction Cost Subtotal | $\mathbf{\$ 1 , 7 1 8 , 3 0 2}$ |
| :--- | ---: |
|  |  |
| Erosion and Sediment Control (2\%) | $\$ 34,366$ |
| Landscaping/Turf Establishment (10\%) | $\$ 171,830$ |
| Signing/Markings (10\%) | $\$ 171,830$ |
| Drainage/Utilities (20\%) | $\$ 343,660$ |
| Contingency (25\%) | $\$ 429,575$ |
|  |  |
| Design and Engineering Estimate (25\%) | $\mathbf{\$ 4 2 9 , 5 7 5}$ |
|  | $\mathbf{\$ 2 , 8 7 0 , 0 0 0}$ |
| Low Rounded Total Cost (no design and engineering) | $\mathbf{\$ 3 , 3 0 0 , 0 0 0}$ |

## Alternative 2D - Path and Center Turn Lane

Assumes construction of a 10' shared use path and curb extensions.
Assumes all modifications can occur within existing right-of-way
Assumes the only curb and gutter modifications occur at intersections for the added curb extensions.
Assumes removal and reconstruction for all driveways on east side.

Unit prices per MnDOT 2019 average bid prices, all estimates are in 2019 dollars and may require escalation for future year construction.


## Alternative 2E - Path and Buffered Bike Lanes

Assumes construction of buffered bike lanes, 10 ' shared use path, and curb extensions.
Assumes all modifications can occur within existing right-of-way
Assumes the only curb and gutter modifications occur at intersections for the added curb extensions.
Assumes removal and reconstruction for all driveways on east side.

Unit prices per MnDOT 2019 average bid prices, all estimates are in 2019 dollars and may require escalation for future year construction.


## Segment 2 - No Build

Assumes pavement mill and overlay, ADA curb ramps, and restriping existing pavement markings.
Assumes all modifications can occur within existing right-of-way.

Unit prices per MnDOT 2019 average bid prices, all estimates are in 2019 dollars and may require escalation for future year construction.

| Item | Unit | Quantity | Unit Cost | Total Cost | Assumptions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pavement Mill and Overlay | SF | 257280 | \$3.00 | \$771,840 |  |
| ADA Ramps | EA | 57 | \$7,000.00 | \$399,000 |  |
| Construction Cost Subtotal |  |  |  | \$1,170,840 |  |
| Erosion and Sediment Control (2\%) |  |  |  | \$23,417 |  |
| Landscaping/Turf Establishment (10\%) |  |  |  | \$117,084 |  |
| Signing/Markings (10\%) |  |  |  | \$117,084 |  |
| Drainage/Utilities (20\%) |  |  |  | \$234,168 |  |
| Contingency (25\%) |  |  |  | \$292,710 |  |
|  |  |  |  |  |  |
| Design and Engineering Estimate (25\%) |  |  |  | \$292,710 |  |
| Low Rounded Total Cost (no design and engineering) |  |  |  | \$1,960,000 |  |
| High Rounded Total Cost |  |  |  | \$2,250,000 |  |

## Segment 2 - Sidewalk Bend-In Option

Assumes construction of curb extensions and sidewalk bend in.
Assumes all modifications can occur within existing right-of-way
Assumes the only curb and gutter modifications are for the added curb extensions.
Assumes quantities for a single intersection quadrant.
Unit prices per MnDOT 2019 average bid prices, all estimates are in 2019 dollars and may require escalation for future year construction.


## Appendix G: Traffic Analysis

## MEMORANDUM

Date: October 14, 2020
To: Luke Champa
Dan Farnsworth
From: Kelsey Retherford, P.E.
Subject: $\quad 17^{\text {th }}$ St N Corridor Study - Traffic Count Analysis
Metropolitan Council of Governments
Project No.: T49. 120979

## Introduction

Turning movement counts were completed at the intersections of $17^{\text {th }} \mathrm{St} \mathrm{N}$ at $15^{\text {th }}$ Ave, $8^{\text {th }}$ Ave and $1^{\text {st }}$ Ave on Tuesday, September 15, 2020. Park Christian School was in session when the count was taken. Additionally, tube counts were collected Tuesday, September $22^{\text {nd }}$ through Thursday the $24^{\text {th }}$ along $17^{\text {th }} \mathrm{St}$ N at the following locations:

- Between $11^{\text {th }}$ Ave and $13^{\text {th }}$ Ave
- Between $5^{\text {th }}$ Ave and $6^{\text {th }}$ Ave
- Between $2^{\text {nd }}$ Ave and $3^{\text {rd }}$ Ave

This memorandum summarizes the volume data collected, compares the data to previous or historic counts available, and recommends if edits should be made to the data or if it is reflective of normal traffic.

## $15^{\text {th }}$ Ave at $17^{\text {th }}$ St Intersection

The counts obtained on 9/15/2020 are very similar to the 11/19/2015 counts provided by the City of Moorhead. Table 1 below shows the peak hour counts. The full 13-hour count is included in the Appendix.

Table 1. $17^{\text {th }}$ St N at $15^{\text {th }}$ Ave N Peak Hour Turning Movement Counts

| Source | 17th St N at 15th Ave N | Time | NORTHBOUND |  | EASTBOUND |  | WESTBOUND |  | Total Entering |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | L | R | T | R | L | T |  |
| Actual Data | 9/15/2020 | AM <br> Peak | 68 | 19 | 157 | 32 | 25 | 274 | 575 |
|  | 11/19/2015 |  | 78 | 14 | 159 | 35 | 14 | 324 | 624 |
|  | 9/15/2020 | $\begin{gathered} \hline \text { PM } \\ \text { Peak } \end{gathered}$ | 40 | 30 | 347 | 52 | 25 | 230 | 724 |
|  | 11/19/2015 |  | 38 | 16 | 327 | 75 | 21 | 187 | 664 |

The ADT was estimated from the 13-hour count completed on 9/15/2020. The volumes were estimated assuming $85 \%$ of the daily traffic is accounted for between 6:00am and 7:00pm. The estimated ADT is shown below.

- $\quad 17^{\text {th }}$ St south of $15^{\text {th }}$ Ave: 1,554
- $15^{\text {th }}$ Ave west of $17^{\text {th }}$ St: 6,593
- $15^{\text {th }}$ Ave east of $17^{\text {th }}$ St: 6,149

Additionally, tube count data to the south of the $15^{\text {th }}$ Ave and $17^{\text {th }} \mathrm{St} \mathrm{N}$ intersection between $11^{\text {th }}$ and $13^{\text {th }}$ Ave was analyzed. Tube count data from 2015 was provided by MetroCOG for comparison. All three days of the September 2020 data were found to be higher than the 2015 data. The data is shown in Table 2 below.

Table 2. Tube Count Data Between $11^{\text {th }}$ and $13^{\text {th }}$ Ave

| Location | $\mathbf{7 / 1 5 / 2 0 1 5}$ <br> (Wednesday) | $\mathbf{7 / 1 6 / 2 0 1 5}$ <br> (Thursday) | $\mathbf{9 / 2 2 / 2 0 2 0}$ <br> (Tuesday) | $\mathbf{9 / 2 3 / 2 0 2 0}$ <br> (Wednesday) | 9/24/2020 <br> (Thursday) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $17^{\text {th }}$ St between $11^{\text {th }}$ and $13^{\text {th }}$ Ave | 1,200 | 1,220 | 1,366 | 1,290 | 1,395 |

Historical volumes were obtained from the MnDOT Traffic Mapping Application. The historical AADT along $17^{\text {th }}$ north of $11^{\text {th }}$ Ave has remained between 1,079 and 1,153 between 2005 and 2015. The historical AADT along $15^{\text {th }}$ Ave remained between 2,100 and 3,357 between 2001 and 2014, but the 2017 volumes show significantly more traffic in 2017 . This is likely due to the fact that the $12^{\text {th }}$ Ave $/ 15^{\text {th }}$ Ave bridge between Fargo and Moorhead went from a toll bridge to a non-toll bridge between the 2013 and 2017 counts.

## 17th St north of 11th Ave

| Year | AADT |
| :---: | :---: |
| 2001 | 1,300 |
| 2003 | 1,419 |
| 2004 | 1,429 |
| 2005 | 1,100 |
| 2006 | 1,079 |
| 2007 | 1,079 |
| 2008 | 1,085 |
| 2009 | 1,150 |
| 2010 | 1,151 |
| 2011 | 1,153 |
| 2012 | 1,153 |
| 2013 | 1,150 |
| 2014 | 1,152 |
| 2015 | 1,100 |

15th Ave west of 17th St

| Year | AADT |
| :---: | :---: |
| 2001 | 2,500 |
| 2003 | 2,946 |
| 2004 | 2,967 |
| 2005 | 2,850 |
| 2006 | 2,796 |
| 2007 | 2,796 |
| 2008 | 2,813 |
| 2009 | 3,050 |
| 2010 | 3,053 |
| 2011 | 3,059 |
| 2013 | 3,350 |
| 2014 | 3,357 |
| 2017 | 7,300 |

15th Ave east of 17th St

| Year | AADT |
| :---: | :---: |
| 2001 | 2,100 |
| 2005 | 2,350 |
| 2009 | 2,550 |
| 2013 | 3,050 |
| 2017 | 6,200 |

## Recommendation

The turning movement count completed at the intersection of $15^{\text {th }}$ Ave and $17^{\text {th }} \mathrm{St}$ is assumed to have normal traffic volumes since the peak hour turning movement counts were very similar to the previous count obtained in 2015 and the estimated ADT's were found to be similar to latest counts published by MnDOT. No edits are recommended to the counts since the volumes appear to be showing normal traffic volumes.

## $8^{\text {th }}$ Ave at $\mathbf{1 7}^{\text {th }}$ St N Intersection

The ADT was estimated at $8^{\text {th }}$ Ave and $17^{\text {th }} \mathrm{St} \mathrm{N}$ from the 13 -hour count completed on $9 / 15 / 2020$. The estimated ADT is shown below.

- $17^{\text {th }}$ St north of $8^{\text {th }}$ Ave: 1,893
- $17^{\text {th }}$ St south of $8^{\text {th }}$ Ave: 2,120

Date: October 14, 2020
Page: 3

- $8^{\text {th }}$ Ave west of $17^{\text {th }}$ St: 231
- $8^{\text {th }}$ Ave east of $17^{\text {th }} \mathrm{St}: 323$

The full 13-hour count is included in the Appendix.
Tube count data between $5^{\text {th }}$ and $6^{\text {th }}$ Ave south of the $8^{\text {th }}$ Ave and $17^{\text {th }} \mathrm{St} \mathrm{N}$ intersection was analyzed. Tube count data from 2015 was provided by MetroCOG for comparison. All three days of the September 2020 data were found to be close to the 2015 data, but slightly lower. Comparing the average of tube counts in 2015 and 2020 indicates that 2020 volumes are $4 \%$ lower than the 2015 volumes. The data is shown in Table 3 below.

Table 3. Tube Count Data Between $5^{\text {th }}$ and $6^{\text {th }}$ Ave

| Location | $\mathbf{6 / 3 0 / 2 0 1 5}$ <br> (Tuesday) | $\mathbf{7 / 1 / 2 0 1 5}$ <br> (Wednesday) | $\mathbf{9 / 2 2 / 2 0 2 0}$ <br> (Tuesday) | 9/23/2020 <br> (Wednesday) | 9/24/2020 <br> (Thursday) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $17^{\text {th }}$ St between $5^{\text {th }}$ and $6^{\text {th }}$ Ave | 2,617 | 2,630 | 2,546 | 2,399 | 2,622 |

Historical volumes along $17^{\text {th }} \mathrm{St} \mathrm{N}$ between $6^{\text {th }}$ and $7^{\text {th }}$ Ave were obtained from the MnDOT Traffic Mapping Application. The historical AADT along $17^{\text {th }}$ north of $6^{\text {th }}$ Ave has remained between 2,400 and 2,550 between 2005 and 2015. There are no historic counts along $8^{\text {th }}$ Ave to compare with the estimated ADTs.

17th St north of 6th Ave

| Year | AADT |
| :---: | :---: |
| 2001 | 2,700 |
| 2003 | 2,948 |
| 2004 | 2,969 |
| 2005 | 2,550 |
| 2006 | 2,502 |
| 2007 | 2,502 |
| 2008 | 2,517 |
| 2009 | 2,400 |
| 2010 | 2,402 |
| 2011 | 2,407 |
| 2012 | 2,407 |
| 2013 | 2,400 |
| 2014 | 2,405 |
| 2015 | 2,400 |

## Recommendation

Based on the historic volumes and tube count data collected near the intersection of $8^{\text {th }}$ Ave and $17^{\text {th }} \mathrm{St} \mathrm{N}$ the turning movement counts seem to be showing normal traffic volumes, however since the average tube counts in 2020 were found to be $4 \%$ lower than the 2015 tube counts we recommend inflating the turning movement counts by an even $5 \%$.

Date: October 14, 2020
Page: 4

## $\mathbf{1}^{\text {st }}$ Ave at $17^{\text {th }}$ St N Intersection

The ADT was estimated at $1^{\text {st }}$ Ave and $17^{\text {th }} \mathrm{St} \mathrm{N}$ from the 13 -hour count completed on $9 / 15 / 2020$. The estimated ADT is shown below.

- $17^{\text {th }}$ St north of $1^{\text {st }}$ Ave: 3,294
- $1^{\text {st }}$ Ave west of $17^{\text {th }}$ St: 8,835
- $1^{\text {st }}$ Ave east of $17^{\text {th }}$ St: 7,983

The full 13-hour count is included in the Appendix.
Tube count data between $2^{\text {nd }}$ and $3^{\text {rd }}$ Ave north of the $1^{\text {st }}$ Ave and $17^{\text {th }} \mathrm{St} \mathrm{N}$ intersection was analyzed. Tube count data from 2015 was provided by MetroCOG for comparison. All three days of the September 2020 data were found to be lower than the 2015 data. Comparing the average of tube counts in 2015 and 2020 indicates that 2020 volumes are about $12 \%$ lower than the 2015 volumes. The data is shown in
Table 4 below.
Table 4. Tube Count Data Between $2^{\text {nd }}$ and $3^{\text {rd }}$ Ave

| Location | $\mathbf{1 0 / 1 2 / 2 0 1 5}$ <br> (Monday) | $\mathbf{1 0 / 1 3 / 2 0 1 5}$ <br> (Tuesday) | $\mathbf{9 / 2 2 / 2 0 2 0}$ <br> (Tuesday) | $\mathbf{9 / 2 3 / 2 0 2 0}$ <br> (Wednesday) | $9 / 24 / \mathbf{2 0 2 0}$ <br> (Thursday) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $17^{\text {th }}$ St between $2^{\text {nd }}$ and $3^{\text {rd }}$ Ave | 3,649 | 3,834 | 3,280 | 3,155 | 3,395 |

Historical volumes at $17^{\text {th }} \mathrm{St} \mathrm{N}$ and $1^{\text {st }}$ Ave were obtained from the MnDOT Traffic Mapping Application. The historical AADT on $17^{\text {th }}$ St north of $2^{\text {nd }}$ Ave has remained between 3,400 and 3,950 between 1997 and 2017. The latest available AADT along $1^{\text {st }}$ Ave east and west of the intersection with $17^{\text {th }} \mathrm{St} \mathrm{N}$ were found to be lower than they had been in recent years with volumes ranging from 10,500 to 13,139 between 2001 and 2017. Comparing the estimated ADTs along $1^{\text {st }}$ Ave from the 13-hour count to the latest MnDOT counts it can be seen that volumes in 2020 are about $25-27 \%$ lower.
17th St north of 2nd Ave

| Year | AADT |
| :---: | :---: |
| 1997 | 3,400 |
| 2001 | 3,800 |
| 2005 | 3,950 |
| 2009 | 3,750 |
| 2013 | 3,550 |
| 2017 | 3,500 |

1st Ave west of 15th St

| Year | AADT |
| :---: | :---: |
| 2001 | 11,600 |
| 2003 | 12,667 |
| 2004 | 12,756 |
| 2005 | 13,100 |
| 2006 | 12,851 |
| 2007 | 12,851 |
| 2008 | 12,928 |
| 2009 | 13,100 |
| 2010 | 13,113 |
| 2011 | 13,139 |
| 2012 | 13,139 |
| 2013 | 11,700 |

1st Ave west of 21st St

| Year | AADT |
| :---: | :---: |
| 2001 | 10,500 |
| 2005 | 12,200 |
| 2009 | 11,500 |
| 2013 | 12,100 |
| 2014 | 12,124 |
| 2017 | 11,000 |

Date: October 14, 2020
Page: 5
Additionally, there are three recently developed apartment buildings along $1^{\text {st }}$ Ave near the intersection of $17^{\text {th }}$ St N as shown in Figure 1.

Figure 1. New Development near $1^{\text {st }}$ Ave and $17^{\text {th }}$ St $\mathbf{N}$ intersection


The apartments have access to $1^{\text {st }}$ Ave from $16^{\text {th }}$ St and $18^{\text {th }}$ St. Based on google maps imagery the buildings were not complete as of May 2017, so it was assumed that the 2017 historic count did not include trips from the new development. Without the development accounted for in the historic counts, new baseline volumes are needed along $1^{\text {st }}$ Ave. The ITE Trip Generation Manual was used to determine what the baseline $1^{\text {st }}$ Ave volumes should be with the apartment buildings complete.

The ITE Trip Generation Manual ( $10^{\text {th }}$ Edition) provides a rate for the peak period and daily trips estimated depending on land use. The ITE Land Use 221 for "Multifamily Housing (Mid-Rise)" was used to estimate trips associated with the newly constructed apartment buildings based upon the assumption of 132 units. The number of units was assumed based on the number of balconies each building has (floor plans available online indicated that each unit has a balcony). Table 5 below shows the estimated number of trips generated.

Table 5. Estimated Trips Generated by The Grove Apartments

| Time of Day | Traffic Split |  | Trips |
| :---: | :---: | :---: | :---: |
| AM Peak Hour | Entering | $26 \%$ | 13 |
|  | Exiting | $74 \%$ | 35 |
| PM Peak Hour | Entering | $61 \%$ | 35 |
|  | Exiting | $39 \%$ | 23 |
| Daily | Entering | $50 \%$ | 314 |
|  | Exiting | $50 \%$ | 314 |

Although the historic MnDOT counts are not directly adjacent to our intersection, we recommend using these volumes as a base to adjust the turning movement count data collected at the $1^{\text {st }}$ Ave and $17^{\text {th }} \mathrm{St} \mathrm{N}$ intersection. The existing breakdown of volumes on the three intersection legs were used to determine how the 628 new daily trips would be added to the roadways surrounding the intersection.

Table 6 shows the latest MnDOT count, existing breakdown of traffic volumes, added trips from development, estimated ADT at the intersection based on the 13-hour count, and the proposed 2020 ADT based on the historic counts with trips added for the recent development.

Table 6. Estimated and Proposed ADT at the $17^{\text {th }} \mathbf{N}$ and $1^{\text {st }}$ Ave Intersection

| Location | Estimated <br> ADT (1) | Latest <br> Published <br> MnDOT Count | Percent <br> Breakdown | Added Trips <br> from <br> Development | Proposed <br> ADT (2) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $17^{\text {th }}$ St north of $1^{\text {st }}$ Ave | 3,294 | 3,500 | $13.4 \%$ | 84 | 3,600 |
| $1^{\text {st }}$ Ave west of $17^{\text {th }}$ St | 8,835 | 11,700 | $44.6 \%$ | 280 | 12,000 |
| $1^{\text {st }}$ Ave east of $17^{\text {th }}$ St | 7,983 | 11,000 | $42 \%$ | 264 | 11,300 |

1. The estimated ADT is derived from the 9/15/2020 turning movement count
2. The proposed ADT is the latest published MnDOT count plus the added trips from the development (rounded to the nearest hundred).

In order to correctly inflate the Tuesday, $9 / 15 / 2020$ counts to account for the difference between the current estimated ADT and proposed ADT we will use the TurnsW32 program. This program allows you to enter the existing turning movement counts along with the anticipated peak hour traffic entering and exiting along each leg. The peak hour entering and exiting traffic would be estimated based the peak hour portion of the proposed 2020 ADT and the current entering and exiting split from the 13-hour count.

## Recommendation

Since the traffic volumes from the $9 / 15 / 2020$ count were significantly lower along $1^{\text {st }}$ Ave than the historic volumes show we recommend increasing the volumes at this intersection. The latest counts along $1^{\text {st }}$ Ave are from 2013 and 2017. These counts were assumed to be taken prior to the construction of the three apartment building complex south of $1^{\text {st }}$ Ave near the intersection of $17^{\text {th }} \mathrm{St} \mathrm{N}$ and $1^{\text {st }}$ Ave. The ITE Trip Generation Manual was used to estimate the number of daily trips added to $1^{\text {st }}$ Ave with this additional development and the volume was distributed to the surrounding roadway network based on the existing volume distribution from the latest historic counts. The proposed ADT was determined by adding the daily trips from the development to the latest historic counts. These proposed ADT's would then be used to inflate the existing turning movement counts so that they are better representative of normal traffic conditions.

## Appendix

17th St N \& 15th Ave N
Moorhead, MN
File Name : 17th St N \& 15th Ave N 0600-1900_09152020

> Groups Printed- Cars + - Trucks


## Inc




17th St N \& 15th Ave N
Moorhead, MN

## Inc Turning Movement Counts

17th St N \& 15th Ave N
Moorhead, MN




## Inc




17th St N \& 8th Ave N
Moorhead, MN

## Inc <br> Turning Movement Counts



## Inc

Turning Movement Counts
17th St N at 1st Ave N
File Name : 17th St N \& 1st Ave N 0600-1900_09152020 00000000
9/15/2020

17th St N at 1st Ave N
File Name : 17th St N \& 1st Ave N 0600-1900_09152020 Site Code $: 00000000$
Start Date $: 9 / 15 / 2020$
Page No $: 2$




17th St N at 1 st Ave N
Moorhead, MN

## Inc

Turning Movement Counts


## Appendix H: Evaluation Matrix

## 17th Street N Corridor Study

Alternative Matrix
Concept Layout Overview

## February 2021

| Criteria |  | Segment 1 |  |  | Segment 2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | No Build | Shared Use Path | Buffered Bike Lanes | No Build | Buffered Bike Lanes | Median w/ Shared Use Path | Median w/ <br> Shared <br> Roadway | Buffered Bike Lanes w/ Shared Use Path | 3-Lane Roadway w/ Shared Use Path |
| Evaluation Matrix Goals | Safety | 0 | + | ++ | 0 | ++ | + | ++ | ++ | ++ |
|  | Mobility | 0 | + | + | 0 | + | + | + | ++ | + |
|  | Cost | 0 | + | + | 0 | + | 0 | + | + | + |
|  | Sustainability | 0 | + | + | 0 | + | 0 | 0 | + | + |
|  | Environmental Impacts | - | + | + | - | + | ++ | ++ | + | + |


| Legend |  |  |  |
| :---: | :---: | :---: | :---: |
| - | 0 | + | ++ |
| Does Not <br> Meet <br> Measure | Minimally <br> Meets <br> Measure | Meets <br> Measure | Exceeds <br> Measure |


17 ${ }^{\text {HT }}$ STREE
17th Street N Corridor Study Alternative Matrix
Alternative Matrix
Detailed Concept Layout Evaluation


| Coal 4 : | Provide access and comenectivit for | Business and neighborhood access and connectivity | + | ++ | + | + | + | 0 | 0 | ++ | + |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Maintain access for local trips into/out of Downtown Moorhead and to/from Highway 10 | Downtown Moorhead and Highway 10 Access | + | + | + | + | + | 0 | 0 | + | + |
|  | Support exsting and future land use plans |  | $\checkmark$ |
|  | Sere neighbortoods livality |  | 0 | + | + | 0 | + | ++ | ++ | + | + |
|  | Consistent with regional and ocal l pans |  | $\checkmark$ |
| Goal \#4 Summany |  |  | 0 | + | + | 0 | + | 0 | 0 | + | + |
|  | Avoid, minimize and mitigate impacts to built environment | Accuisition of property | $\checkmark$ |
|  | Provide opportunities for environmetnal enhancements | Opportunities for streetscaping and/or landscaping | - | + | + | - | + | ++ | ++ | + | + |
|  | Avoid, minimize and mitigate impacts for flood risks and stormwater issues | Effectiveness of stormwater management features to meet standards | $\checkmark$ |
| Goal 45 Summany |  |  | - | + | + | - | + | ++ | ++ | + | + |
| Public Support/Feedback |  |  |  |  |  |  |  |  |  |  |  |
| Agency Support |  |  | $\square$ | $\square$ | $\square$ | - | $\square$ | - | 口 | - | - |
|  |  |  |  | Legend |  |  |  |  |  |  |  |
|  |  |  |  | $\begin{gathered} \text { Does Not } \\ \text { Meat } \\ \text { Measure } \end{gathered}$ | $\frac{0}{\substack{\text { Minimally Meets } \\ \text { Measure }}}$ | $\begin{gathered} \text { Meets } \\ \text { Measure } \end{gathered}$ | $\begin{aligned} & \text { Exxeads } \\ & \text { Measurer } \end{aligned}$ |  |  |  |  |

## Appendix I: Public Engagement Summaries

## PUBLIC INPUT SUMMARY



[^0]
## REIMAGINE <br> 

17TMSTREE

# 17 ${ }^{\text {th }}$ Street $\mathbf{N}$ Corridor Study Public Engagement Period Two Results - Corridor Alternatives Survey 

Date:
To: Luke Champa, Assistant Planner, FM Metro COG
Dan Farnsworth, Transportation Planner, FM Metro COG
From: Cody Christianson, PE, Project Manager, Bolton \& Menk, Inc.
Jim Mertz, GISP, Project Planner, Bolton \& Menk, Inc.
Connor Cox, Project Planner, Toole Design

Subject: Public Engagement \#2 Results - Corridor Alternatives Survey
$17^{\text {th }}$ Street $N$ Corridor Study
Fargo-Moorhead Metropolitan Council of Governments (Metro COG)

## Public Input - Segment 1 Alternatives



SEGMENT 1 // ALTERNATIVE 1A

| - Do you support Alternative 1A? |  |  |  | Column | Bar | Pie | Map |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60 |  |  |  |  |  |  |  |
| 50 |  |  |  |  |  |  |  |
| 40 |  |  |  |  |  |  |  |
| 30 |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |
| 0 Strongly Oppos... Oppose Neutral Support Stro |  |  |  |  |  |  |  |
| Hide table |  |  |  | $\checkmark$ Empty cate | gorie |  | $\uparrow \downarrow$ Sort |
| Answers |  | Count |  | Percentage |  |  |  |
| Strongly Oppose |  | 19 |  | 13.97\% |  |  |  |
| Oppose |  | 5 |  | 3.68\% |  |  |  |
| Neutral |  | 26 |  | 19.12\% |  |  |  |
| Support |  | 53 |  | 38.97\% |  |  |  |
| Strongly Support |  | 28 |  | 20.59\% |  |  |  |
|  |  |  |  | Answered: | 131 | Skip | pped: 5 |



SEGMENT $1 / /$ ALTERNATIVE $1 B$



SEGMENT 1 // EXISTING CONDITIONS

| - Do you support the No Build Alternative on Segment 1? |  |  |  | Column | Bar | Pie | Map |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35 |  |  |  |  |  |  |  |
| 30 |  |  |  |  |  |  |  |
| 25 |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |  |
| 0 Strongly Oppos... Oppose Neutral Support |  |  |  |  |  |  |  |
| Hide table |  |  |  | $\checkmark$ Empty cate | gorie |  | $\uparrow \downarrow$ Sort |
| Answers |  | Count |  | Percentage |  |  |  |
| Strongly Oppose |  | 30 |  | 22.06\% |  |  |  |
| Oppose |  | 15 |  | 11.03\% |  |  |  |
| Neutral |  | 32 |  | 23.53\% |  |  |  |
| Support |  | 16 |  | 11.76\% |  |  |  |
| Strongly Support |  | 35 |  | 25.74\% |  |  |  |
|  |  |  |  | Answered | 128 | Skip | ped: 8 |

## Public Input - Segment 2 Alternatives





SEGMENT $2 / /$ ALTERNATIVE $2 B$



SEGMENT 2 // ALTERNATIVE 2C



SEGMENT $2 / /$ EXISTING CONDITIONS

| - Do you support the No Build Alternative on Segment 2? |  |  |  | Column | Bar | Pie | Map |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 |  |  |  |  |  |  |  |
| 40 |  |  |  |  |  |  |  |
| 30 |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |
| Strongly Oppos... Neutral Support Stro |  |  |  |  |  |  |  |
| Hide table |  |  |  | $\checkmark$ Empty cat | gorie |  | $\dagger \downarrow$ Sort |
| Answers |  | Count |  | Percentage |  |  |  |
| Strongly Oppose |  | 25 |  | 18.38\% |  |  |  |
| Oppose |  | 21 |  | 15.44\% |  |  |  |
| Neutral |  | 20 |  | 14.71\% |  |  |  |
| Support |  | 15 |  | 11.03\% |  |  |  |
| Strongly Support |  | 47 |  | 34.56\% |  |  |  |
|  |  |  |  | Answered | : 128 | Skip | ped: 8 |

## Public Input - Sidewalk Alternatives

Option 1: Existing Sidewalk Crossing Location


- Do you support Sidewalk Design Option 1?


| Hide table <br> Answers | Count | Percentage categories $\uparrow \downarrow$ Sort |
| :--- | :--- | :--- |
| Strongly Oppose | 26 | $19.12 \%$ |
| Oppose | 25 | $18.38 \%$ |
| Neutral | 32 | $23.53 \%$ |
| Support | 18 | $13.24 \%$ |
| Strongly Support | 24 | $17.65 \%$ |

Option 2: Sidewalk Bends in Closer to Street



## Study Review Committee - Segment 1 Alternatives



SEGMENT 1 // ALTERNATIVE 1A

| - Do you support Alternative 1A? |  |  | Column | Bar | Pie | Map |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |
| 3 |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |
| 1 |  |  |  |  |  |  |
| 0 Strongly Oppos... Oppose Neutral Support Strongly Suppo |  |  |  |  |  |  |
| Hide table |  |  | $\checkmark$ Empty categories $\uparrow \downarrow$ Sort |  |  |  |
| Answers | Count | Percentage |  |  |  |  |
| Strongly Oppose | 0 | 0\% |  |  |  |  |
| Oppose | 0 | 0\% |  |  |  |  |
| Neutral | 2 | 25\% |  |  |  |  |
| Support | 1 | 12.5\% |  |  |  |  |
| Strongly Support | 5 | 62.5\% |  |  |  |  |
|  |  |  | Answer | d: 8 | Skip | ped: 0 |



SEGMENT 1 // ALTERNATIVE 1B

| - Do you support Alternative 1B? |  |  |  | Column | Ber | Pie | Map |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 |  |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |  |
| 3 |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |
| 1 |  |  |  |  |  |  |  |
| Strongly Oppos. | Oppose | Neutral | Support | Strongly Suppo... |  |  |  |
| Hide table |  |  |  | $\checkmark$ Empty categories $\uparrow \downarrow$ Sort |  |  |  |
| Answers |  | Count |  | Percentage |  |  |  |
| Strongly Oppose |  | 0 |  | 0\% |  |  |  |
| Oppose |  | 2 |  | 25\% |  |  |  |
| Neutral |  | 5 |  | 62.5\% |  |  |  |
| Support |  | 1 |  | 12.5\% |  |  |  |
| Strongly Support |  | 0 | 0\% |  |  |  |  |
|  |  |  |  | Answer | ed: 8 | Skip | ped: 0 |



SEGMENT 1 // EXISTING CONDITIONS


## Study Review Committee - Segment 2 Alternatives



SEGMENT 2 // ALTERNATIVE 2A

| - Do you support Alternative 2A? |  |  |  | Column | Ber | Pre | Mop |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 |  |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |  |
| 3 |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |
| 1 |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |
| Hide table |  |  |  | $\checkmark$ Empty categories $\quad 1$ Sort |  |  |  |
| Answers |  | Count |  | Percentage |  |  |  |
| Strongly Oppose |  | 0 |  | 0\% |  |  |  |
| Oppose |  | 1 |  | 12.5\% |  |  |  |
| Neutral |  | 5 |  | 02.5\% |  |  |  |
| Support |  | 2 |  | 25\% |  |  |  |
| Strongly Support |  | 0 | 0\% |  |  |  |  |
|  |  |  | Answer | ed: 8 | Skipp | ped: 0 |



SEGMENT $2 / /$ ALTERNATIVE $2 B$

| - Do you support Alternative 2B? |  |  |  | Column | Bar | Pie | Map |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |
| 1 |  |  |  |  |  |  |  |
| 0 Strongly Oppos... Oppose Neutral Support |  |  |  |  |  |  |  |
| Hide table |  |  |  | $\checkmark$ Empty categories $\uparrow \downarrow$ Sort |  |  |  |
| Answers |  | Count |  | Percentage |  |  |  |
| Strongly Oppose |  | 1 |  | 12.5\% |  |  |  |
| Oppose |  | 1 |  | 12.5\% |  |  |  |
| Neutral |  | 1 |  | 12.5\% |  |  |  |
| Support |  | 2 |  | 25\% |  |  |  |
| Strongly Support |  | 3 |  | 37.5\% |  |  |  |
|  |  |  | Answer | d: 8 | Skip | ped: 0 |



SEGMENT 2 // ALTERNATIVE 2C



SEGMENT $2 / /$ EXISTING CONDITIONS

| - Do you support the No Build Alternative on Segment 2? |  |  |  | Column | Ber | Pie | Map |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 |  |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |  |
| 3 |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |
| 1 |  |  |  |  |  |  |  |
| 0 Strongly Oppos... Oppose Neutral Support |  |  |  |  |  |  |  |
| Hide table |  |  |  | $\checkmark$ Empty cate | gorie |  | $\uparrow \downarrow$ Sort |
| Answers |  | Count |  | Percentage |  |  |  |
| Strongly Oppose |  | 1 |  | 12.5\% |  |  |  |
| Oppose |  | 5 |  | 62.5\% |  |  |  |
| Neutral |  | 2 |  | 25\% |  |  |  |
| Support |  | 0 |  | 0\% |  |  |  |
| Strongly Support |  | 0 |  | 0\% |  |  |  |
|  |  |  |  | Answer | d: 8 | Skip | ped: 0 |

## Study Review Committee - Sidewalk Alternatives

Option 1: Existing Sidewalk Crossing Location



Option 2: Sidewalk Bends in Closer to Street


- Do you support Sidewalk Design Option 2?


| Hide table <br> Answers | Count | $\checkmark$ Empty categories $\uparrow \downarrow$ Sort |
| :--- | :--- | :--- |
| Strongly Oppose | 0 | Percentage |
| Oppose | 0 | $0 \%$ |
| Neutral | 2 | $0 \%$ |
| Support | 2 | $25 \%$ |
| Strongly Support | 4 | $50 \%$ |

##  <br> 17TH STREE

# $17^{\text {th }}$ Street N Corridor Study Public Engagement Period Three Results Segment 2 Corridor Alternatives Survey 

Date:

To: Luke Champa, Assistant Planner, FM Metro COG
Dan Farnsworth, Transportation Planner, FM Metro COG
From: Cody Christianson, PE, Project Manager, Bolton \& Menk, Inc.
Jim Mertz, GISP, Project Planner, Bolton \& Menk, Inc.
Connor Cox, Project Planner, Toole Design

Subject: Public Engagement \#3 Results - Corridor Alternatives Survey
$17^{\text {th }}$ Street $N$ Corridor Study
Fargo-Moorhead Metropolitan Council of Governments (Metro COG)

## Public Input - Segment 2 Alternatives



SEGMENT 2 // PATH w/ CENTER TURN LANE

| Do you support the Path With Center Turn Lane? |  |  | Column | Bar | Pie | Map |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |
| Strongly Oppos... Oppose Sutral Support Strongly Suppo |  |  |  |  |  |  |
| Hide table |  |  | $\checkmark$ Empty cate | gories |  | $\uparrow \downarrow$ Sort |
| Answers | Count |  | Percentage |  |  |  |
| Strongly Oppose | 11 |  | 13.1\% |  |  |  |
| Oppose | 10 |  | 11.9\% |  |  |  |
| Neutral | 18 |  | 21.43\% |  |  |  |
| Support | 20 |  | 23.81\% |  |  |  |
| Strongly Support | 21 |  | 25\% |  |  |  |
|  |  |  | Answere | d: 80 | Skipp | ped: 4 |



SEGMENT 2 // PATH w/ BUFFERED BIKE LANES

Do you support Path With Buffered Bike Lanes? Column Bar Pie Map


| Hide table |  | Empty categories $\uparrow \downarrow$ Sort |
| :--- | :--- | :--- |
| Answers | Count | Percentage |
| Strongly Oppose | 18 | $21.43 \%$ |
| Oppose | 18 | $21.43 \%$ |
| Neutral | 8 | $9.52 \%$ |
| Support | 11 | $13.1 \%$ |
| Strongly Support | 29 | $34.52 \%$ |

```
To: }\quad1\mp@subsup{7}{}{\mathrm{ th }}\mathrm{ St N Corridor Study File - Public Engagement Appendix
From: Luke Champa, Metro COG Assistant Transportation Planner
Date: 05/25/2021
Re: Final Presentations and Public Engagement
```

At the conclusion of the $17^{\text {th }}$ Street N Corridor Study project, when the final draft report was prepared, the project team made presentations and requested action on the plan from the following decision-making bodies. The date, time, location, decision, and important comments from said decision-makers may also be found below. No comments from the general public were received during any of the meetings, which were all open to the public.

- Moorhead Planning Commission - Wednesday, May $5^{\text {th }}$ at 5:00 p.m.
- Virtual
- Motion to "Recommend Approval of the $17^{\text {th }}$ Street $N$ Corridor Study to Moorhead City Council" - PASSED
- Moorhead City Council - Monday, May 10 ${ }^{\text {th }} @$ 5:30 p.m.
- Virtual
- Motion to "Recommend Approval of the $17^{\text {th }}$ Street $N$ Corridor Study to the Metro COG Policy Board" - PASSED
- See resolution
- *A Moorhead City Council-member shared an observation regarding the Stenerson Lumber parking lot and safety concerns caused by visibility or lack thereof, due to vehicles parking in spaces in the southwest corner of the parking lot and blocking views around the $17^{\text {th }} \mathrm{St} \mathrm{N}$ and $1^{\text {st }}$ Ave N intersection, especially for vehicles heading south on $17^{\text {th }} \mathrm{St} \mathrm{N}$ and turning left (east) onto $1^{\text {st }}$ Avenue N .
- Metro COG Transportation Technical Committee (TTC) - Thursday, May 13 ${ }^{\text {th }}$ @ 10:00 a.m.
- Virtual
- Motion to "Recommend Approval of the $17^{\text {th }}$ Street $N$ Corridor Study to the Metro COG Policy Board" - PASSED
- Metro COG Policy Board - Thursday, May 20th @ 4:00 p.m.
- Virtual
- Motion to "Approve the $17^{\text {th }}$ Street $N$ Corridor Study" - PASSED
*important comment


## RESOLUTION 2021-0510-B

## Resolution to Approve 17th Street N Corridor Study

WHEREAS, in March 2020, MetroCOG and the City of Moorhead commenced the $17^{\text {th }}$ Street N Corridor Study, and

WHEREAS, MetroCOG contracted with Bolton \& Menk and Cole Design to complete the study; and

WHEREAS, the study takes a comprehensive look at the $17^{\text {th }}$ Street N corridor from $1^{\text {st }}$ Avenue N to $15^{\text {th }}$ Avenue N in anticipation of the scheduled rehabilitation project in 2022; and

WHEREAS, the purpose of the study was to identify future improvement needs and to develop alternative improvements based on public comments and the 15-member Study Review Committee; and

WHEREAS, the final draft report has been finalized and was recommended for approval by the Moorhead Planning Commission at their May 5, 2021 meeting.

NOW, THEREFORE, BE IT RESOLVED by the City Council of the City of Moorhead, Minnesota that the $17^{\text {th }}$ Street N Corridor Study is recommended for approval to the MetroCOG Policy Board.

PASSED: May 10, 2021 by the City Council of the City of Moorhead.

## APPROVED BY:



## ATTEST:



CHRISTINA RUST, City Clerk


[^0]:    Sign up for email updates and future engagement opportunities at： www．fmmetrocog．org／Moorhead－17th－st－n

    Project Contact： Luke Champa（701）532－5107

